16 research outputs found

    Site fidelity and movement patterns of reef manta rays (Mobula alfredi: Mobulidae) using passive acoustic telemetry in northern Raja Ampat, Indonesia

    Get PDF
    Though extremely valuable to the local marine tourism industry, there is a dearth of published information on the ecology and population dynamics of reef manta rays (Mobula alfredi) in Raja Ampat, West Papua, Indonesia. Knowledge of the movement ecology in particular of this large and scattered population is urgently needed to better manage the rapidly expanding manta-focused tourism. Here we report the results of an initial passive acoustic telemetry study designed to provide local managers with the first detailed knowledge of the site use and movement patterns of reef mantas in northern Raja Ampat. A total of 39 reef mantas were tagged with Vemco V16 acoustic transmitters over a 15-month period between 27 November 2013 and 22 February 2015. To monitor their movements, VR2W acoustic receivers were deployed at eight sites corresponding to known manta cleaning and feeding aggregation sites, with receivers downloaded every six months over a two-year initial monitoring period. The duration between tag deployments and last date of detections at sites ranged from 1 to 682 days (mean ± SE = 237 ± 27). The cumulative number of days of manta detections at receiver sites by individual mantas ranged from 1 to 188 days (mean ± SE = 42 ± 7). Manta Ridge was the most visited site with 565 days of detections. The tagged mantas demonstrated strong site fidelity to the observed aggregation sites. At the same time, they also exhibited seasonal movements within an approximately 150 km long corridor between sites in the Dampier Strait and the northwest of Waigeo Island. Data analysed from a nearby array of six VR2W receivers in southern Raja Ampat (approximately 180 km to the south of the study area) confirmed that none of the tagged mantas were detected in this array, providing further evidence of strong site fidelity and limited movements within northern Raja Ampat. More than 96% of detections occurred during the daytime. The number of detections reached a peak around noon at Yefnabi Kecil and Eagle Rock and slightly earlier at Manta Ridge. These findings have been shared with the Raja Ampat Marine Protected Area Management Authority and are now being used in the formulation of a management plan for this vulnerable and economically important species to ensure the long-term health of Raja Ampat's reef mantas and the sustainability of manta tourism in the region

    Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Womersley, F. C., Humphries, N. E., Queiroz, N., Vedor, M., da Costa, I., Furtado, M., Tyminski, J. P., Abrantes, K., Araujo, G., Bach, S. S., Barnett, A., Berumen, M. L., Bessudo Lion, S., Braun, C. D., Clingham, E., Cochran, J. E. M., de la Parra, R., Diamant, S., Dove, A. D. M., Dudgeon, C. L., Erdmann, M. V., Espinoza, E., Fitzpatrick, R., González Cano, J., Green, J. R., Guzman, H. M., Hardenstine, R., Hasan, A., Hazin, F. H. V., Hearn, A. R., Hueter, R. E., Jaidah, M. Y., Labaja, J., Ladinol, F., Macena, B. C. L., Morris Jr., J. J., Norman, B. M., Peñaherrera-Palmav, C., Pierce, S. J., Quintero, L. M., Ramırez-Macías, D., Reynolds, S. D., Richardson, A. J., Robinson, D. P., Rohner, C. A., Rowat, D. R. L., Sheaves, M., Shivji, M. S., Sianipar, A. B., Skomal, G. B., Soler, G., Syakurachman, I., Thorrold, S. R., Webb, D. H., Wetherbee, B. M., White, T. D., Clavelle, T., Kroodsma, D. A., Thums, M., Ferreira, L. C., Meekan, M. G., Arrowsmith, L. M., Lester, E. K., Meyers, M. M., Peel, L. R., Sequeira, A. M. M., Eguıluz, V. M., Duarte, C. M., & Sims, D. W. Global collision-risk hotspots of marine traffic and the world’s largest fish, the whale shark. Proceedings of the National Academy of Sciences of the United States of America, 119(20), (2022): e2117440119, https://doi.org/10.1073/pnas.2117440119.Marine traffic is increasing globally yet collisions with endangered megafauna such as whales, sea turtles, and planktivorous sharks go largely undetected or unreported. Collisions leading to mortality can have population-level consequences for endangered species. Hence, identifying simultaneous space use of megafauna and shipping throughout ranges may reveal as-yet-unknown spatial targets requiring conservation. However, global studies tracking megafauna and shipping occurrences are lacking. Here we combine satellite-tracked movements of the whale shark, Rhincodon typus, and vessel activity to show that 92% of sharks’ horizontal space use and nearly 50% of vertical space use overlap with persistent large vessel (>300 gross tons) traffic. Collision-risk estimates correlated with reported whale shark mortality from ship strikes, indicating higher mortality in areas with greatest overlap. Hotspots of potential collision risk were evident in all major oceans, predominantly from overlap with cargo and tanker vessels, and were concentrated in gulf regions, where dense traffic co-occurred with seasonal shark movements. Nearly a third of whale shark hotspots overlapped with the highest collision-risk areas, with the last known locations of tracked sharks coinciding with busier shipping routes more often than expected. Depth-recording tags provided evidence for sinking, likely dead, whale sharks, suggesting substantial “cryptic” lethal ship strikes are possible, which could explain why whale shark population declines continue despite international protection and low fishing-induced mortality. Mitigation measures to reduce ship-strike risk should be considered to conserve this species and other ocean giants that are likely experiencing similar impacts from growing global vessel traffic.Funding for data analysis was provided by the UK Natural Environment Research Council (NERC) through a University of Southampton INSPIRE DTP PhD Studentship to F.C.W. Additional funding for data analysis was provided by NERC Discovery Science (NE/R00997/X/1) and the European Research Council (ERC-AdG-2019 883583 OCEAN DEOXYFISH) to D.W.S., Fundação para a Ciência e a Tecnologia (FCT) under PTDC/BIA/28855/2017 and COMPETE POCI-01–0145-FEDER-028855, and MARINFO–NORTE-01–0145-FEDER-000031 (funded by Norte Portugal Regional Operational Program [NORTE2020] under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund–ERDF) to N.Q. FCT also supported N.Q. (CEECIND/02857/2018) and M.V. (PTDC/BIA-COM/28855/2017). D.W.S. was supported by a Marine Biological Association Senior Research Fellowship. All tagging procedures were approved by institutional ethical review bodies and complied with all relevant ethical regulations in the jurisdictions in which they were performed. Details for individual research teams are given in SI Appendix, section 8. Full acknowledgments for tagging and field research are given in SI Appendix, section 7. This research is part of the Global Shark Movement Project (https://www.globalsharkmovement.org)

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Predicting mobulid ray distribution in coastal areas of Lesser Sunda Seascape: Implication for spatial and fisheries management

    No full text
    The Lesser Sunda Seascape (LSS) is considered one of the regions with the largest mobulid fisheries in Indonesia, although their spatial distribution and habitat preference in the LSS is still largely unknown. The goal of the present study was to describe the habitat preference and distribution of the oceanic manta rays, spinetail devil rays, and Chilean devil rays in the coastal area of LSS. We used multiple data sources of mobulid ray sightings and selected significant environmental predictors to execute the maximum entropy model. The model performed well in predicting mobulid ray habitat in the coastal area of LSS and indicated that sea-surface chlorophyll-a (SSC-a), sea-surface temperature (SST), sea-surface salinity (SSS), distance to the 200-m isobath, distance to the 3000-m isobath, and slope were all significant environmental predictors of their distribution. This study confirms that the habitat preference of mobulid rays were in the areas that close to the 200-m isobath and with higher chlorophyll-a concentration as proxy for their prey density. Combining habitat models with fisheries activity records indicated that the areas where these overlaps may represent key mobulid habitats. This study highlights a critical need for species-specific and populations-level management measures for Indonesian mobulid rays, whereas current MPA design has focused on a broad-scale coastal ecosystem management approach, which may have limited effectiveness in practice. This study provides valuable information for the improvement of MPA design and fisheries management tools, through maximum entropy modeling as a powerful means to describe species’ distributions and habitat preference. We recommend that future efforts focus on documenting and incorporating data from large-scale commercial fisheries to improve our knowledge of habitat preference and distribution models in offshore areas and the high seas, and to assess the preference for coastal versus oceanic habitats

    Data from: Correcting for missing and irregular data in home-range estimation

    No full text
    Home-range estimation is an important application of animal tracking data that is frequently complicated by autocorrelation, sampling irregularity, and small effective sample sizes. We introduce a novel, optimal weighting method that accounts for temporal sampling bias in autocorrelated tracking data. This method corrects for irregular and missing data, such that oversampled times are downweighted and undersampled times are upweighted to minimize error in the home-range estimate. We also introduce computationally efficient algorithms that make this method feasible with large datasets. Generally speaking, there are three situations where weight optimization improves the accuracy of home-range estimates: with marine data, where the sampling schedule is highly irregular, with duty cycled data, where the sampling schedule changes during the observation period, and when a small number of home-range crossings are observed, making the beginning and end times more independent and informative than the intermediate times. Using both simulated data and empirical examples including reef manta ray, Mongolian gazelle, and African buffalo, optimal weighting is shown to reduce the error and increase the spatial resolution of home-range estimates. With a conveniently packaged and computationally efficient software implementation, this method broadens the array of datasets with which accurate space-use assessments can be made
    corecore