26,486 research outputs found

    Multidimensional entropy landscape of quantum criticality

    Full text link
    The Third Law of Thermodynamics states that the entropy of any system in equilibrium has to vanish at absolute zero temperature. At nonzero temperatures, on the other hand, matter is expected to accumulate entropy near a quantum critical point (QCP), where it undergoes a continuous transition from one ground state to another. Here, we determine, based on general thermodynamic principles, the spatial-dimensional profile of the entropy S near a QCP and its steepest descent in the corresponding multidimensional stress space. We demonstrate this approach for the canonical quantum critical compound CeCu6-xAux near its onset of antiferromagnetic order. We are able to link the directional stress dependence of S to the previously determined geometry of quantum critical fluctuations. Our demonstration of the multidimensional entropy landscape provides the foundation to understand how quantum criticality nucleates novel phases such as high-temperature superconductivity.Comment: 14 pages, 4 figure

    Unusual persistence of superconductivity against high magnetic fields in the strongly-correlated iron-chalcogenide film FeTe:Ox_{x}

    Get PDF
    We report an unusual persistence of superconductivity against high magnetic fields in the iron chalcogenide film FeTe:Ox_{x} below ~ 2.5 K. Instead of saturating like a mean-field behavior with a single order parameter, the measured low-temperature upper critical field increases progressively, suggesting a large supply of superconducting states accessible via magnetic field or low-energy thermal fluctuations. We demonstrate that superconducting states of finite momenta can be realized within the conventional theory, despite its questionable applicability. Our findings reveal a fundamental characteristic of superconductivity and electronic structure in the strongly-correlated iron-based superconductors.Comment: 10 pages, 3 figure

    Transcriptional responses of Biomphalaria pfeifferi and Schistosoma mansoni following exposure to niclosamide, with evidence for a synergistic effect on snails following exposure to both stressors.

    Get PDF
    BackgroundSchistosomiasis is one of the world's most common NTDs. Successful control operations often target snail vectors with the molluscicide niclosamide. Little is known about how niclosamide affects snails, including for Biomphalaria pfeifferi, the most important vector for Schistosoma mansoni in Africa. We used Illumina technology to explore how field-derived B. pfeifferi, either uninfected or harboring cercariae-producing S. mansoni sporocysts, respond to a sublethal treatment of niclosamide. This study afforded the opportunity to determine if snails respond differently to biotic or abiotic stressors, and if they reserve unique responses for when presented with both stressors in combination. We also examined how sporocysts respond when their snail host is treated with niclosamide.Principal findingsCercariae-producing sporocysts within snails treated with niclosamide express ~68% of the genes in the S. mansoni genome, as compared to 66% expressed by intramolluscan stages of S. mansoni in snails not treated with niclosamide. Niclosamide does not disable sporocysts nor does it seem to provoke from them distinctive responses associated with detoxifying a xenobiotic. For uninfected B. pfeifferi, niclosamide treatment alone increases expression of several features not up-regulated in infected snails including particular cytochrome p450s and heat shock proteins, glutathione-S-transferases, antimicrobial factors like LBP/BPI and protease inhibitors, and also provokes strong down regulation of proteases. Exposure of infected snails to niclosamide resulted in numerous up-regulated responses associated with apoptosis along with down-regulated ribosomal and defense functions, indicative of a distinctive, compromised state not achieved with either stimulus alone.Conclusions/significanceThis study helps define the transcriptomic responses of an important and under-studied schistosome vector to S. mansoni sporocysts, to niclosamide, and to both in combination. It suggests the response of S. mansoni sporocysts to niclosamide is minimal and not reflective of a distinct repertoire of genes to handle xenobiotics while in the snail host. It also offers new insights for how niclosamide affects snails

    Reconciliation of object interaction models

    Get PDF
    This paper presents Reconciliation+, a tool-supported method which identifies overlaps between models of different object interactions expressed as UML sequence and/or collaboration diagrams, checks whether the overlapping elements of these models satisfy specific consistency rules, and guides developers in handling these inconsistencies. The method also keeps track of the decisions made and the actions taken in the process of managing inconsistencies

    An Error Analysis of Students\u27 Writing on Diabetic Chart Explanation at the Sixth Semester Students of STIKES Bina USAda Bali

    Full text link
    English for specific purposes is useful to be used in some sectors like tourism, hospital, law, and so on.  Especially in STIKES Bina Usada Bali, the students as the second language learner may face some errors during learning how to write the diabetic chart explanation. They hardly put the data into the chart because they do not understand the meaning and the lexical choice especially in medical English. This study aimed at identifying and classifying types and factors caused of error made by student at sixth Semester Students of Stikes Bina Usada Bali. This research uses the combination of descriptive qualitative method in collecting and analyzing the data. Descriptive analysis in form of qualitative research used as the design in this study. Then, the result is described.  &nbsp

    The in vivo transcriptome of Schistosoma mansoni in the prominent vector species Biomphalaria pfeifferi with supporting observations from Biomphalaria glabrata.

    Get PDF
    BackgroundThe full scope of the genes expressed by schistosomes during intramolluscan development has yet to be characterized. Understanding the gene products deployed by larval schistosomes in their snail hosts will provide insights into their establishment, maintenance, asexual reproduction, ability to castrate their hosts, and their prolific production of human-infective cercariae. Using the Illumina platform, the intramolluscan transcriptome of Schistosoma mansoni was investigated in field-derived specimens of the prominent vector species Biomphalaria pfeifferi at 1 and 3 days post infection (d) and from snails shedding cercariae. These S. mansoni samples were derived from the same snails used in our complementary B. pfeifferi transcriptomic study. We supplemented this view with microarray analyses of S. mansoni from B. glabrata at 2d, 4d, 8d, 16d, and 32d to highlight robust features of S. mansoni transcription, even when a different technique and vector species was used.Principal findingsTranscripts representing at least 7,740 (66%) of known S. mansoni genes were expressed during intramolluscan development, with the greatest number expressed in snails shedding cercariae. Many transcripts were constitutively expressed throughout development featuring membrane transporters, and metabolic enzymes involved in protein and nucleic acid synthesis and cell division. Several proteases and protease inhibitors were expressed at all stages, including some proteases usually associated with cercariae. Transcripts associated with G-protein coupled receptors, germ cell perpetuation, and stress responses and defense were well represented. We noted transcripts homologous to planarian anti-bacterial factors, several neural development or neuropeptide transcripts including neuropeptide Y, and receptors that may be associated with schistosome germinal cell maintenance that could also impact host reproduction. In at least one snail the presence of larvae of another digenean species (an amphistome) was associated with repressed S. mansoni transcriptional activity.Conclusions/significanceThis in vivo study, emphasizing field-derived snails and schistosomes, but supplemented with observations from a lab model, provides a distinct view from previous studies of development of cultured intramolluscan stages from lab-maintained organisms. We found many highly represented transcripts with suspected or unknown functions, with connection to intramolluscan development yet to be elucidated

    Stage 1 Geotechnical Studies for Interstate 15 Reconstruction Project, Salt Lake County, Utah

    Get PDF
    Interstate 15 Reconstruction Project includes rebuilding of 137 bridges; widening the existing three general purpose lane roadway to four general purpose lane with a HOV lane and an auxiliary lane roadway, and other associated work such as converting the existing diamond interchanges to single point urban interchanges (SPUI). The project will be built under a design-build procurement process and is anticipated to be completed in 4 ½ years by October of 2001. The subsurface soils beneath the corridor consist of lake deposits (Lake Bonneville), namely soft to medium stiff plastic clays, silts and loose to medium dense sands ranging in thickness over 150 meters. The shallow water table is generally 5 to 10 feet below natural grade. The soft clays have low shear strengths and are highly compressible under embankment loads. The Salt Lake segment of the Wasatch fault is approximately 3.5 kilometer to the cast of the highway corridor. The structures will have to be designed to meet the seismic criteria and take into account the high liquefaction potential of some of the saturated sand lenses. Stage 1 efforts included identification of the various subsurface conditions; evaluation of soil parameters; establishing guidelines for field investigations, laboratory testing; analysis; reporting etc. In addition, various project specific studies were carried out for the proposed reconstruction project, details of which are presented in the paper

    A Moving Bump in a Continuous Manifold: A Comprehensive Study of the Tracking Dynamics of Continuous Attractor Neural Networks

    Full text link
    Understanding how the dynamics of a neural network is shaped by the network structure, and consequently how the network structure facilitates the functions implemented by the neural system, is at the core of using mathematical models to elucidate brain functions. This study investigates the tracking dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of neuronal recurrent interactions, CANNs can hold a continuous family of stationary states. They form a continuous manifold in which the neural system is neutrally stable. We systematically explore how this property facilitates the tracking performance of a CANN, which is believed to have clear correspondence with brain functions. By using the wave functions of the quantum harmonic oscillator as the basis, we demonstrate how the dynamics of a CANN is decomposed into different motion modes, corresponding to distortions in the amplitude, position, width or skewness of the network state. We then develop a perturbative approach that utilizes the dominating movement of the network's stationary states in the state space. This method allows us to approximate the network dynamics up to an arbitrary accuracy depending on the order of perturbation used. We quantify the distortions of a Gaussian bump during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable and the reaction time for the network to catch up with an abrupt change in the stimulus.Comment: 43 pages, 10 figure

    Dynamical Synapses Enhance Neural Information Processing: Gracefulness, Accuracy and Mobility

    Full text link
    Experimental data have revealed that neuronal connection efficacy exhibits two forms of short-term plasticity, namely, short-term depression (STD) and short-term facilitation (STF). They have time constants residing between fast neural signaling and rapid learning, and may serve as substrates for neural systems manipulating temporal information on relevant time scales. The present study investigates the impact of STD and STF on the dynamics of continuous attractor neural networks (CANNs) and their potential roles in neural information processing. We find that STD endows the network with slow-decaying plateau behaviors-the network that is initially being stimulated to an active state decays to a silent state very slowly on the time scale of STD rather than on the time scale of neural signaling. This provides a mechanism for neural systems to hold sensory memory easily and shut off persistent activities gracefully. With STF, we find that the network can hold a memory trace of external inputs in the facilitated neuronal interactions, which provides a way to stabilize the network response to noisy inputs, leading to improved accuracy in population decoding. Furthermore, we find that STD increases the mobility of the network states. The increased mobility enhances the tracking performance of the network in response to time-varying stimuli, leading to anticipative neural responses. In general, we find that STD and STP tend to have opposite effects on network dynamics and complementary computational advantages, suggesting that the brain may employ a strategy of weighting them differentially depending on the computational purpose.Comment: 40 pages, 17 figure
    corecore