45 research outputs found
Phase 4 Pharmacovigilance Trial of Paromomycin Injection for the Treatment of Visceral Leishmaniasis in India
Background. A phase 3 study demonstrated the safety and efficacy of paromomycin (paromomycin IM injection) for treatment of VL in an inpatient setting. Methods. This phase 4 study was conducted to assess the safety and efficacy of paromomycin in children and adults in an outpatient setting in Bihar, India. Results. This study enrolled 506 adult and pediatric patients. Of the 494 patients in the intent-to-treat (ITT) population, 98% received a full course of treatment. The overall study completion rate was 94% (462/494) for the ITT population and 96% (461/479) for the efficacy-evaluable (EE) population. Initial clinical cure was 99.6%, and final clinical cure 6 months after treatment was 94.2%. Grade 3 or 4 adverse events occurred in 5% of patients; events with a frequency of ≥1% were increases in alanine aminotransferase and aspartate aminotransferase. Conclusions. This study confirms the safety and efficacy of paromomycin to treat VL in an outpatient setting
Cost-Effectiveness Analysis of Combination Therapies for Visceral Leishmaniasis in the Indian Subcontinent
Visceral leishmaniasis (VL) is a serious health problem in the Indian subcontinent affecting the rural poor. It has a significant economic impact on concerned households. The development of drug resistance is a major problem and threatens control efforts under the VL elimination initiative. With an unprecedented choice of antileishmanial drugs (but no newer compound in clinical development), policies that protect these drugs against the emergence of resistance are required. A possible strategy that has been successfully used for malaria and tuberculosis is the use of combination therapies. This study is the first comprehensive assessment of the cost-effectiveness of all possible mono- and combination therapies for the treatment of visceral leishmaniasis in the Indian subcontinent. The analysis was done from the societal perspective, including both health provider and household costs. The present work shows that combination treatments are a cost-effective alternative to current monotherapy for VL. Given their expected impact on emergence of drug resistance, the use of combination therapy should be considered in the context of the VL elimination programme in the Indian subcontinent
Ambulatory-Based Standardized Therapy for Multi-Drug Resistant Tuberculosis: Experience from Nepal, 2005–2006
OBJECTIVE: The aim of this study was to describe treatment outcomes for multi-drug resistant tuberculosis (MDR-TB) outpatients on a standardized regimen in Nepal. METHODOLOGY: Data on pulmonary MDR-TB patients enrolled for treatment in the Green Light Committee-approved National Programme between 15 September 2005 and 15 September 2006 were studied. Standardized regimen was used (8Z-Km-Ofx-Eto-Cs/16Z-Ofx-Eto-Cs) for a maximum of 32 months and follow-up was by smear and culture. Drug susceptibility testing (DST) results were not used to modify the treatment regimen. MDR-TB therapy was delivered in outpatient facilities for the whole course of treatment. Multivariable analysis was used to explain bacteriological cure as a function of sex, age, initial body weight, history of previous treatment and the region of report. PRINCIPAL FINDINGS: In the first 12-months, 175 laboratory-confirmed MDR-TB cases (62% males) had outcomes reported. Most cases had failed a Category 2 first-line regimen (87%) or a Category 1 regimen (6%), 2% were previously untreated contacts of MDR-TB cases and 5% were unspecified. Cure was reported among 70% of patients (range 38%-93% by Region), 8% died, 5% failed treatment, and 17% defaulted. Unfavorable outcomes were not correlated to the number of resistant drugs at baseline DST. Cases who died had a lower mean body weight than those surviving (40.3 kg vs 47.2 kg, p<0.05). Default was significantly higher in two regions [Eastern OR = 6.2; 95%CL2.0-18.9; Far West OR = 5.0; 95%CL1.0-24.3]. At logistic regression, cure was inversely associated with body weight <36 kg [Adj.OR = 0.1; 95%CL0.0-0.3; ref. 55-75 kg] and treatment in the Eastern region [Adj.OR = 0.1; 95%CL0.0-0.4; ref. Central region]. CONCLUSIONS: The implementation of an ambulatory-based treatment programme for MDR-TB based on a fully standardized regimen can yield high cure rates even in resource-limited settings. The determinants of unfavorable outcome should be investigated thoroughly to maximize likelihood of successful treatment
Drug Susceptibility in Leishmania Isolates Following Miltefosine Treatment in Cases of Visceral Leishmaniasis and Post Kala-Azar Dermal Leishmaniasis
Resistance to antimonials has emerged as a major hurdle to the treatment and control of VL and led to the introduction of Miltefosine as first line treatment in the Indian subcontinent. MIL is an oral drug with a long half-life, and it is feared that resistance may emerge rapidly, threatening control efforts under the VL elimination program. There is an urgent need for monitoring treatment efficacy and emergence of drug resistance in the field. In a set of VL/PKDL cases recruited for MIL treatment, we observed comparable drug susceptibility in pre- and post-treatment isolates from cured VL patients while MIL susceptibility was significantly reduced in isolates from VL relapse and PKDL cases. The PKDL isolates showed higher tolerance to MIL as compared to VL isolates. Both VL and PKDL isolates were uniformly susceptible to PMM. MIL transporter genes LdMT/LdRos3 were previously reported as potential resistance markers in strains in which MIL resistance was experimentally induced. The point mutations and the down-regulated expression of these transporters observed in vitro could, however, not be verified in natural populations of parasites. LdMT/LdRos3 genes therefore, do not appear to be suitable markers so far for monitoring drug susceptibility in clinical leishmanial isolates
Experimental Induction of Paromomycin Resistance in Antimony-Resistant Strains of L. donovani: Outcome Dependent on In Vitro Selection Protocol
Paromomycin (PMM) has recently been introduced for treatment of visceral leishmaniasis in India. Although no clinical resistance has yet been reported, proactive vigilance should be warranted. The present in vitro study compared the outcome and stability of experimental PMM-resistance induction on promastigotes and intracellular amastigotes. Cloned antimony-resistant L. donovani field isolates from India and Nepal were exposed to stepwise increasing concentrations of PMM (up to 500 µM), either as promastigotes or intracellular amastigotes. One resulting resistant strain was cloned and checked for stability of resistance by drug-free in vitro passage as promastigotes for 20 weeks or a single in vivo passage in the golden hamster. Resistance selection in promastigotes took about 25 weeks to reach the maximal 97 µM inclusion level that did not affect normal growth. Comparison of the IC50 values between the parent and the selected strains revealed a 9 to 11-fold resistance for the Indian and 3 to 5-fold for the Nepalese strains whereby the resistant phenotype was also maintained at the level of the amastigote. Applying PMM pressure to intracellular amastigotes produced resistance after just two selection cycles (IC50 = 199 µM) compared to the parent strain (IC50 = 45 µM). In the amastigote-induced strains/clones, lower PMM susceptibilities were seen only in amastigotes and not at all in promastigotes. This resistance phenotype remained stable after serial in vitro passage as promastigote for 20 weeks and after a single in vivo passage in the hamster. This study clearly demonstrates that a different PMM-resistance phenotype is obtained whether drug selection is applied to promastigotes or intracellular amastigotes. These findings may have important relevance to resistance mechanism investigations and the likelihood of resistance development and detection in the field
Oral miltefosine for Indian visceral leishmaniasis.
BACKGROUND: There are 500,000 cases per year of visceral leishmaniasis, which occurs primarily in the Indian subcontinent. Almost all untreated patients die, and all the effective agents have been parenteral. Miltefosine is an oral agent that has been shown in small numbers of patients to have a favorable therapeutic index for Indian visceral leishmaniasis. We performed a clinical trial in India comparing miltefosine with the most effective standard treatment, amphotericin B. METHODS: The study was a randomized, open-label comparison, in which 299 patients 12 years of age or older received orally administered miltefosine (50 or 100 mg [approximately 2.5 mg per kilogram of body weight] daily for 28 days) and 99 patients received intravenously administered amphotericin B (1 mg per kilogram every other day for a total of 15 injections). RESULTS: The groups were well matched in terms of age, weight, proportion with previous failure of treatment for leishmaniasis, parasitologic grade of splenic aspirate, and splenomegaly. At the end of treatment, splenic aspirates were obtained from 293 patients in the miltefosine group and 98 patients in the amphotericin B group. No parasites were identified, for an initial cure rate of 100 percent. By six months after the completion of treatment, 282 of the 299 patients in the miltefosine group (94 percent [95 percent confidence interval, 91 to 97]) and 96 of the 99 patients in the amphotericin B group (97 percent) had not had a relapse; these patients were classified as cured. Vomiting and diarrhea, generally lasting one to two days, occurred in 38 percent and 20 percent of the patients in the miltefosine group, respectively. CONCLUSIONS: Oral miltefosine is an effective and safe treatment for Indian visceral leishmaniasis. Miltefosine may be particularly advantageous because it can be administered orally. It may also be helpful in regions where parasites are resistant to current agents
Efficacy and tolerability of miltefosine for childhood visceral leishmaniasis in India.
Miltefosine has previously been shown to cure 97% of cases of visceral leishmaniasis (VL) in Indian adults. Because approximately one-half of cases of VL occur in children, we evaluated use of the adult dosage of miltefosin (2.5 mg/kg per day for 28 days) in 80 Indian children (age, 2-11 years) with parasitologically confirmed infection in an open-label clinical trial. Clinical and parasitological parameters were reassessed at the end of treatment and 6 months later. One patient died of intercurrent pneumonia on day 6. The other 79 patients demonstrated no parasites after treatment, had marked clinical improvement, and were deemed initially cured. Three patients had relapse, and 1 patient was lost to follow-up. The final cure rate was 94% for all enrolled patients and 95% for evaluable patients. Side effects included mild-to-moderate vomiting or diarrhea (each in approximately 25% of patients) and mild-to-moderate, transient elevations in the aspartate aminotransferase level during the early treatment phase (in 55%). This trial indicates that miltefosine is as effective and well tolerated in Indian children with VL as in adults and that it can be recommended as the first choice for treatment of childhood VL in India
Treatment options for visceral leishmaniasis: a systematic review of clinical studies done in India, 1980-2004.
The state of Bihar in India carries the largest share of the world's burden of antimony-resistant visceral leishmaniasis. We analysed clinical studies done in Bihar with different treatments between 1980 and 2004. Overall, 53 studies were included (all but one published), of which 15 were comparative (randomised, quasi-randomised, or non-randomised), 23 dose-finding, and 15 non-comparative. Data from comparative studies were pooled when appropriate for meta-analysis. Overall, these studies enrolled 7263 patients in 123 treatment arms. Adequacy of methods used to do the studies and report on them varied. Unresponsiveness to antimony has developed steadily in the past to such an extent that antimony must now be replaced, despite attempts to stop its progression by increasing dose and duration of therapy. The classic second-line treatments are unsuited: pentamidine is toxic and its efficacy has also declined, and amphotericin B deoxycholate is effective but requires hospitalisation for long periods and toxicity is common. Liposomal amphotericin B is very effective and safe but currently unaffordable because of its high price. Miltefosine-the first oral drug for visceral leishmaniasis-is now registered and marketed in India and is effective, but should be used under supervision to prevent misuse. Paromomycin (or aminosidine) is effective and safe, and although not yet available, a regulatory submission is due soon. To preserve the limited armamentarium of drugs to treat visceral leishmaniasis, drugs should not be deployed unprotected; combinations can make drugs last longer, improve treatment, and reduce costs to households and health systems. India, Bangladesh, and Nepal agreed recently to undertake measures towards the elimination of visceral leishmaniasis. The lessons learnt in Bihar could help inform policy decisions both regionally and elsewhere