133 research outputs found

    Dynamics characteristics of a rotary table motorized spindle with externally pressurized air bearings

    Get PDF
    The face grinding process depends on high-precision rotary table spindle with a large axial load capacity. This paper develops an ultra-precision rotary table spindle with externally pressurized air bearings consisting of a double-pad thrust bearing and a journal bearing; a vacuum clamp system is designed to locate and hold the workpiece. The dynamic model for the rotor-bearing system has been established by using the Reynolds equation and the rigid-body dynamic theory considering five degrees of freedom (DOF). The effects of static and dynamic behaviors of the spindle with the bearing’s key parameters are analyzed systematically. Finally, an experiment study is conducted to verify the theoretical model

    Effect of Al alloying on cavitation erosion behavior of TaSi2 nanocrystalline coatings

    Get PDF
    To broaden the scope of non-aerospace applications for titanium-based alloys, both hexagonal C40 binary TaSi2 and ternary Al alloyed TaSi2 nanocrystalline coatings were exploited to enhance the cavitation erosion resistance of Ti-6Al-4V alloy in acidic environments. To begin with, the roles of Al addition in influencing the structural stability and mechanical properties of hexagonal C40 Ta(Si1-xAlx)2 compounds were modelled using first-principles calculations. The calculated key parameters, such as Pugh\u27s index (B/G ratio), Poisson\u27s ratio, and Cauchy pressures, indicated that there was a threshold value for Al addition, below which the increase of Al content would render the Ta(Si1-xAlx)2 compounds more ductile, but above which no obvious change would occur. Subsequently, the TaSi2 and Ta(Si0.875Al0.125)2 coatings were prepared and their microstructure and phase composition were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Both the two coatings exhibited a uniform thickness of 15 μm and a densely packed structure mainly composed of spherically shaped nanocrystallites with an average diameter of about 5 nm. Nanoindentation measurements revealed that Al alloying reduced the hardness (H) and elastic modulus (E) values of the TaSi2 coating. Ultrasonic cavitation erosion tests were carried out by immersing coated and uncoated samples in a 0.5 M HCl solution. The cavitation-erosion analysis of the tested samples was investigated by various electrochemical techniques, mass loss weight and SEM observation. The results suggested that both coated samples provided a better protection for Ti-6Al-4V against the cavitation-erosion damage in acidic environments, but the addition of Al further improved the cavitation-erosion resistance of the TaSi2 coating

    Excellent combination of HPLC-RSD-DAD-ESI/MS and HSCCC experiments to screen and identify radical scavengers from Neo-Taraxacum siphonanthun

    Full text link
    Our previous research found that the crude extract of Neo-T. siphonanthun exhibited an effective DPPH (1,1-diphenyl-2-picryhydrazyl) radical scavenging activity. In this study an online rapid screening method, high-performance liquid chromatography-radical scavenging detection-diode array detector-electrospray ionization mass spectrometry (HPLC-RSD- DAD-ESI/MS) system, was developed for screening individual antioxidants from the most active fraction. Accordingly, three isomeric derivatives were detected. The target active compounds were isolated by high-speed counter-current chromatography (HSCCC) with the purity over 99%, and were identified as luteolin-3'-O-β-D-glucopyranoside (1), luteolin-7-O-β-D-glucopyranoside (2) and luteolin-4'-O-β-D-glucopyranoside (3) by analysis of its off-line nuclear magnetic resonance (NMR) spectra. Antioxidant activity of three compounds was assessed by off-line DPPH assay, and all of them showed potent activity

    Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2

    Full text link
    Weyl semimetal is a new quantum state of matter [1-12] hosting the condensed matter physics counterpart of relativisticWeyl fermion [13] originally introduced in high energy physics. The Weyl semimetal realized in the TaAs class features multiple Fermi arcs arising from topological surface states [10, 11, 14-16] and exhibits novel quantum phenomena, e.g., chiral anomaly induced negative mag-netoresistance [17-19] and possibly emergent supersymmetry [20]. Recently it was proposed theoretically that a new type (type-II) of Weyl fermion [21], which does not have counterpart in high energy physics due to the breaking of Lorentz invariance, can emerge as topologically-protected touching between electron and hole pockets. Here, we report direct spectroscopic evidence of topological Fermi arcs in the predicted type-II Weyl semimetal MoTe2 [22-24]. The topological surface states are confirmed by directly observing the surface states using bulk-and surface-sensitive angle-resolved photoemission spectroscopy (ARPES), and the quasi-particle interference (QPI) pattern between the two putative Fermi arcs in scanning tunneling microscopy (STM). Our work establishes MoTe2 as the first experimental realization of type-II Weyl semimetal, and opens up new opportunities for probing novel phenomena such as exotic magneto-transport [21] in type-II Weyl semimetals.Comment: submitted on 01/29/2016. Nature Physics, in press. Spectroscopic evidence of the Fermi arcs from two complementary surface sensitive probes - ARPES and STS. A comparison of the calculated band structure for T_d and 1T' phase to identify the topological Fermi arcs in the T_d phase is also included in the supplementary informatio

    PSR J1926-0652: A Pulsar with Interesting Emission Properties Discovered at FAST

    Get PDF
    We describe PSR J1926-0652, a pulsar recently discovered with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Using sensitive single-pulse detections from FAST and long-term timing observations from the Parkes 64-m radio telescope, we probed phenomena on both long and short time scales. The FAST observations covered a wide frequency range from 270 to 800 MHz, enabling individual pulses to be studied in detail. The pulsar exhibits at least four profile components, short-term nulling lasting from 4 to 450 pulses, complex subpulse drifting behaviours and intermittency on scales of tens of minutes. While the average band spacing P3 is relatively constant across different bursts and components, significant variations in the separation of adjacent bands are seen, especially near the beginning and end of a burst. Band shapes and slopes are quite variable, especially for the trailing components and for the shorter bursts. We show that for each burst the last detectable pulse prior to emission ceasing has different properties compared to other pulses. These complexities pose challenges for the classic carousel-type models.Comment: 13pages with 12 figure
    • …
    corecore