806 research outputs found

    INORGANIC AND ORGANIC PHOSPHORUS INTERACTIONS WITH HYDROXY-INTERLAYERED SOIL MINERALS

    Get PDF
    Phosphorus (P), a necessary plant and animal nutrient, can also lead to eutrophication of fresh waters when in excess. Appropriate P management is necessary to prevent fresh water pollution. Mineralogy of soil clays has been shown to affect P adsorption, desorption, and movement through soils. Specifically, hydroxy-interlayered minerals have been shown to adsorb and retain inorganic P in soil systems. This study was designed to determine the sorption and desorption characteristics of inorganic, organic, and mixed forms of P interacting with soil hydroxy-interlayered vermiculites (HIV) and smectites (HIS), and compare the findings to sorption and desorption processes of natural aluminum (Al) and Iron (Fe) hydroxide minerals. Results indicate natural Al and Fe hydroxide minerals sorbed and retained P more strongly than hydroxy-interlayered minerals in our samples and inositol hexakisphosphate was more highly sorbed and retained than inorganic P

    Evaluation of Stress Corrosion Cracking Susceptibility Using Fracture Mechanics Techniques, Part 1

    Get PDF
    Stress corrosion cracking (SSC) tests were performed on 13 aluminum alloys, 13 precipitation hardening stainless steels, and two titanium 6Al-4V alloy forgings to compare fracture mechanics techniques with the conventional smooth specimen procedures. Commercially fabricated plate and rolled or forged bars 2 to 2.5-in. thick were tested. Exposures were conducted outdoors in a seacoast atmosphere and in an inland industrial atmosphere to relate the accelerated tests with service type environments. With the fracture mechanics technique tests were made chiefly on bolt loaded fatigue precracked compact tension specimens of the type used for plane-strain fracture toughness tests. Additional tests of the aluminum alloy were performed on ring loaded compact tension specimens and on bolt loaded double cantilever beams. For the smooth specimen procedure 0.125-in. dia. tensile specimens were loaded axially in constant deformation type frames. For both aluminum and steel alloys comparative SCC growth rates obtained from tests of precracked specimens provide an additional useful characterization of the SCC behavior of an alloy

    A CMOS Synapse Design Implementing Tunable Asymmetric Spike Timing-Dependent Plasticity

    Get PDF
    A CMOS synapse design is presented which can perform tunable asymmetric spike timing-dependent learning in asynchronous spiking neural networks. The overall design consists of three primary subcircuit blocks, and the operation of each is described. Pair-based Spike Timing-Dependent Plasticity (STDP) of the entire synapse is then demonstrated through simulation using the Cadence Virtuoso platform. Tuning of the STDP curve learning window and rate of synaptic weight change is possible using various control parameters. With appropriate settings, it is shown the resulting learning rule closely matches that observed in biological systems

    The evolutionary ecology of decorating behaviour

    Get PDF
    Many animals decorate themselves through the accumulation of environmental material on their exterior. Decoration has been studied across a range of different taxa, but there are substantial limits to current understanding. Decoration in non-humans appears to function predominantly in defence against predators and parasites, although an adaptive function is often assumed rather than comprehensively demonstrated. It seems predominantly an aquatic phenomenon-presumably because buoyancy helps reduce energetic costs associated with carrying the decorative material. In terrestrial examples, decorating is relatively common in the larval stages of insects. Insects are small and thus able to generate the power to carry a greater mass of material relative to their own body weight. In adult forms, the need to be lightweight for flight probably rules out decoration. We emphasize that both benefits and costs to decoration are rarely quantified, and that costs should include those associated with collecting as well as carrying the material.PostprintPeer reviewe

    Quantum Mechanics and Linearized Gravitational Waves

    Get PDF
    The interaction of classical gravitational waves (GW) with matter is studied within a quantum mechanical framework. The classical equations of motion in the long wave-length limit is quantized and a Schroedinger equation for the interaction of GW with matter is proposed. Due to its quadrapole nature, the GW interacts with matter by producing squeezed quantum states. The resultant hamiltonian is quite different from one would expect from general principles, however. The interaction of GW with the free particle, the harmonic oscillator and the hydrogen atom is then studied using this hamiltonian.Comment: 24 pages, written in REVTE

    Random and Correlated Phases of Primordial Gravitaional Waves

    Full text link
    The phases of primordial gravity waves is analysed in detail within a quantum mechanical context following the formalism developed by Grishchuk and Sidorov. It is found that for physically relevant wavelengths both the phase of each individual mode and the phase {\it difference} between modes are randomly distributed. The phase {\it sum} between modes with oppositely directed wave-vectors, however, is not random and takes on a definite value with no rms fluctuation. The conventional point of view that primordial gravity waves appear after inflation as a classical, random stochastic background is also addressed.Comment: 14 pages, written in REVTE
    • …
    corecore