9 research outputs found

    Genome-wide association meta-analysis identifies 48 risk variants and highlights the role of the stria vascularis in hearing loss

    Get PDF
    Hearing loss is one of the top contributors to years lived with disability and is a risk factor for dementia. Molecular evidence on the cellular origins of hearing loss in humans is growing. Here, we performed a genome-wide association meta-analysis of clinically diagnosed and self-reported hearing impairment on 723,266 individuals and identified 48 significant loci, 10 of which are novel. A large proportion of associations comprised missense variants, half of which lie within known familial hearing loss loci. We used single-cell RNA-sequencing data from mouse cochlea and brain and mapped common-variant genomic results to spindle, root, and basal cells from the stria vascularis, a structure in the cochlea necessary for normal hearing. Our findings indicate the importance of the stria vascularis in the mechanism of hearing impairment, providing future paths for developing targets for therapeutic intervention in hearing loss

    Systematic identification of functional SNPs interrupting 3'UTR polyadenylation signals.

    No full text
    Alternative polyadenylation (APA) is emerging as a widespread regulatory layer since the majority of human protein-coding genes contain several polyadenylation (p(A)) sites in their 3'UTRs. By generating isoforms with different 3'UTR length, APA potentially affects mRNA stability, translation efficiency, nuclear export, and cellular localization. Polyadenylation sites are regulated by adjacent RNA cis-regulatory elements, the principals among them are the polyadenylation signal (PAS) AAUAAA and its main variant AUUAAA, typically located ~20-nt upstream of the p(A) site. Mutations in PAS and other auxiliary poly(A) cis-elements in the 3'UTR of several genes have been shown to cause human Mendelian diseases, and to date, only a few common SNPs that regulate APA were associated with complex diseases. Here, we systematically searched for SNPs that affect gene expression and human traits by modulation of 3'UTR APA. First, focusing on the variants most likely to exert the strongest effect, we identified 2,305 SNPs that interrupt the canonical PAS or its main variant. Implementing pA-QTL tests using GTEx RNA-seq data, we identified 330 PAS SNPs (called PAS pA-QTLs) that were significantly associated with the usage of their p(A) site. As expected, PAS-interrupting alleles were mostly linked with decreased cleavage at their p(A) site and the consequential 3'UTR lengthening. However, interestingly, in ~10% of the cases, the PAS-interrupting allele was associated with increased usage of an upstream p(A) site and 3'UTR shortening. As an indication of the functional effects of these PAS pA-QTLs on gene expression and complex human traits, we observed for few dozens of them marked colocalization with eQTL and/or GWAS signals. The PAS-interrupting alleles linked with 3'UTR lengthening were also strongly associated with decreased gene expression, indicating that shorter isoforms generated by APA are generally more stable than longer ones. Last, we carried out an extended, genome-wide analysis of 3'UTR variants and detected thousands of additional pA-QTLs having weaker effects compared to the PAS pA-QTLs

    Optimizing cancer immunotherapy response prediction by tumor aneuploidy score and fraction of copy number alterations

    No full text
    Abstract Identifying patients that are likely to respond to cancer immunotherapy is an important, yet highly challenging clinical need. Using 3139 patients across 17 different cancer types, we comprehensively studied the ability of two common copy-number alteration (CNA) scores—the tumor aneuploidy score (AS) and the fraction of genome single nucleotide polymorphism encompassed by copy-number alterations (FGA)—to predict survival following immunotherapy in both pan-cancer and individual cancer types. First, we show that choice of cutoff during CNA calling significantly influences the predictive power of AS and FGA for patient survival following immunotherapy. Remarkably, by using proper cutoff during CNA calling, AS and FGA can predict pan-cancer survival following immunotherapy for both high-TMB and low-TMB patients. However, at the individual cancer level, our data suggest that the use of AS and FGA for predicting immunotherapy response is currently limited to only a few cancer types. Therefore, larger sample sizes are needed to evaluate the clinical utility of these measures for patient stratification in other cancer types. Finally, we propose a simple, non-parameterized, elbow-point-based method to help determine the cutoff used for calling CNAs

    Integrated deep learning model for predicting DNA methylation profiles and tumor types from histopathology in central nervous system tumors

    No full text
    DEPLOY codes in the manuscript "Integrated deep learning model for predicting DNA methylation and tumor types from histopathology in central nervous system tumors" are uploaded here. Please see the README for details

    Alternative cleavage and polyadenylation generates downstream uncapped RNA isoforms with translation potential

    Get PDF
    The use of alternative promoters, splicing, and cleavage and polyadenylation (APA) generates mRNA isoforms that expand the diversity and complexity of the transcriptome. Here, we uncovered thousands of previously undescribed 5' uncapped and polyadenylated transcripts (5' UPTs). We show that these transcripts resist exonucleases due to a highly structured RNA and N6-methyladenosine modification at their 5' termini. 5' UPTs appear downstream of APA sites within their host genes and are induced upon APA activation. Strong enrichment in polysomal RNA fractions indicates 5' UPT translational potential. Indeed, APA promotes downstream translation initiation, non-canonical protein output, and consistent changes to peptide presentation at the cell surface. Lastly, we demonstrate the biological importance of 5' UPTs using Bcl2, a prominent anti-apoptotic gene whose entire coding sequence is a 5' UPT generated from 5' UTR-embedded APA sites. Thus, APA is not only accountable for terminating transcripts, but also for generating downstream uncapped RNAs with translation potential and biological impact
    corecore