17 research outputs found

    Ets-1 p51 and p42 isoforms differentially modulate Stromelysin-1 promoter according to induced DNA bend orientation

    Get PDF
    The Stromelysin-1 gene promoter contains a palindrome of two Ets-binding sites (EBS) that bind the p51 and p42 isoforms of the human Ets-1-transcription factor. A previous study established that full gene transactivation is associated with a ternary complex consisting of two p51 bound to the two EBS on the promoter. p42, only able to bind one of the two EBS, induces only very weak activity. Here, we investigate the mechanism by which the Stromelysin-1 promoter discriminates between p51 and p42. The differential stoichiometry of the two Ets-1 isoforms arises from the Stromelysin-1 EBS palindrome. The ternary complex requires the presence of two inhibitory domains flanking the DNA-binding domain and the ability to form an intramolecular autoinhibition module. Most importantly, the p51-ternary and the p42-binary complexes induce DNA curvatures with opposite orientations. These results establish that differential DNA bending, via p51 and p42 differential binding, is correlated with the Stromelysin-1 promoter activation process

    Flow-Induced Vibrations Caused by Roughness in Pipes Conveying Fluid

    No full text

    DNA bending by thyroid hormone receptor: influence of half-site spacing and RXR.

    No full text
    Transcriptional activation by thyroid hormone (T3) requires interactions between the T3 receptor (TR) and T3 response elements (TREs) composed of two copies of sequences related to AGGTCA. Direct repeats of this sequence are a functional TRE when spaced by 4 but not by 5 bp (DR4 versus DR5). TR bound as monomers, homodimers and heterodimers with retinoid X receptor (RXR) to both DR4 and DR5, with an approximately 10-fold greater affinity for DR4 due to reduced dissociation of the protein-DNA complex. We explored DNA bending as an additional variable which could influence the transcriptional outcome of the TR-TRE interaction. Circular permutation indicated a large distortion of the DNA following TR binding, but phasing analysis strongly suggested that this was due only in small part to DNA bending. Phasing analysis indicated that both TR/RXR and TR homodimer induced bends of approximately 10 degrees in DR4, but caused little bending of DR5. Moreover, the TR homo- and heterodimers bent DR4 in opposite directions. These results indicate that in addition to regulating the affinity and spacing requirement for DNA binding by TR, the TR dimer partner may also modulate transcription by influencing the direction of the bending induced by TR binding to DNA, although this effect may be subtle, due to the modest degree of bending

    DNA bending by the silencer protein NeP1 is modulated by TR and RXR.

    No full text
    NeP1 binds to the F1 silencer element of the chicken lysozyme gene and, in the presence of TR, v-ERBA or RAR, synergistically represses transcriptional activity. This repression involves a silencing mechanism acting independently of the relative promoter position. Here we show that NeP1 alone can induce a significant directed bend on DNA. The chicken homologue of human NeP1, CTCF, shows identical binding and bending properties. In contrast, the isolated DNA binding domain of CTCF efficiently binds DNA, but fails to confer bending. Similarly, the TR-RXR hetero- or homodimer, binding adjacent to NeP1 at the F2 sequence, do not show significant DNA bending. The binding of the T3 ligand to TR changes neither the magnitude nor the direction of the NeP1 induced bend. However, when all factors are bound simultaneously as a quaternary complex, the TR-RXR heterodimer changes the location of the bend center, the flexure angle and the bending direction

    LIM protein Ajuba functions as a nuclear receptor corepressor and negatively regulates retinoic acid signaling

    Get PDF
    Corepressors play an essential role in nuclear receptor-mediated transcriptional repression. In general, corepressors directly bind to nuclear receptors via CoRNR boxes (L/I-X-X-I/V-I) in the absence of ligand and appear to act as scaffolds to further recruit chromatin remodeling complexes to specific target genes. Here, we describe the identification of the multiple LIM domain protein Ajuba as a unique corepressor for a subset of nuclear hormone receptors. Ajuba contains functional nuclear-receptor interacting motifs and selectively interacts with retinoic acid receptors (RARs) and rexinoid receptor (RXRs) subtypes in a ligand-dependent manner. Simultaneous mutation of these motifs abolishes RAR binding and concomitantly leads to loss of repression on RARE reporter genes. P19 cells depleted of Ajuba are highly sensitized to all-trans retinoic acid (atRA)-induced transcription and differentiation. In the absence of atRA, Ajuba can be readily found at the RARE control elements of RAR endogenous target genes. Stimulation of cells with atRA results in the dissociation of Ajuba from these regions. Moreover, we observed that coexpression of the known Ajuba binding partner Prmt5 (protein arginine methyltransferase-5) inhibited the Ajuba/RAR interaction. The high-affinity Ajuba-RAR/RXR interaction site overlaps the region responsible for Ajuba/Prmt5 binding, and thus binding appears to be mutually exclusive, providing a potential mechanism for these observations. Identification of Ajuba as a unique corepressor for nuclear receptors sheds new light on mechanisms for nuclear receptor-mediated repression and provides a unique target for developing more effective therapeutics to modulate this important pathway
    corecore