111 research outputs found

    Factors Influencing Breast Density in Japanese Women Aged 40-49 in Breast Cancer Screening Mammography

    Get PDF
    A relatively large number of women in their 40s with high-density breasts, in which it can be difficult to detect lesions, are encountered in mammography cancer screenings in Japan. Here, we retrospectively investigated factors related to breast density. Two hundred women (40-49 years old) were examined at the screening center in our hospital. Multivariate analysis showed that factors such as small abdominal circumference, high HDL cholesterol, and no history of childbirth were related to high breast density in women in their 40s undergoing mammography. Other non-mammographic screening methods should be considered in women with abdominal circumferences <76cm, HDL-C >53mg/dl, and no history of childbirth, as there is a strong possibility of these women having high-density breasts that can make lesion detection difficult

    The Maximum Standardized Uptake Value Is More Reliable Than Size Measurement in Early Follow-up to Evaluate Potential Pulmonary Malignancies Following Radiofrequency Ablation

    Get PDF
    We retrospectively evaluated the accumulation of fluorodeoxy glucose (FDG) in pulmonary malignancies without local recurrence during 2-year follow-up on positron emission tomography (PET)/computed tomography (CT) after radiofrequency ablation (RFA). Thirty tumors in 25 patients were studied (10 non-small cell lung cancers;20 pulmonary metastatic tumors). PET/CT was performed before RFA, 3 months after RFA, and 6 months after RFA. We assessed the FDG accumulation with the maximum standardized uptake value (SUVmax) compared with the diameters of the lesions. The SUVmax had a decreasing tendency in the first 6 months and, at 6 months post-ablation, FDG accumulation was less affected by inflammatory changes than at 3 months post-RFA. The diameter of the ablated lesion exceeded that of the initial tumor at 3 months post-RFA and shrank to pre-ablation dimensions by 6 months post-RFA. SUVmax was more reliable than the size measurements by CT in the first 6 months after RFA, and PET/CT at 6 months post-RFA may be more appropriate for the assessment of FDG accumulation than that at 3 months post-RFA

    Highly Efficient Ultracentrifugation-free Chromatographic Purification of Recombinant AAV Serotype 9

    Get PDF
    Recombinant adeno-associated virus serotype 9 (rAAV9) can specifically transduce muscle and neuronal tissues; thus, rAAV9 can potentially be used in gene therapy. However, rAAV9 is the most challenging rAAV serotype to purify. Traditionally, rAAV9 has been purified by ultracentrifugation, which is not scalable. We recently described a chromatographic purification protocol for rAAV1; this protocol can achieve scalable purifications. In this study, we attempted to optimize this protocol for purifying rAAV9 preparations, and we developed a novel, effective method for high-yield purification of rAAV9 using quaternary ammonium anion exchangers and size-exclusion chromatography. The final purified rAAV9 contained mainly three capsid proteins, as observed by SDS-PAGE. Furthermore, negative-stain electron microscopy demonstrated that 96.1% ± 1.1% of rAAV9 particles carried the viral genome containing the EGFP transgene, indicating that impurities and empty capsids can be eliminated with our purification protocol. The final rAAV9 titer obtained by our protocol totaled 2.5 ± 0.4 × 1015 viral genomes produced from ∼3.2 × 109 HEK293EB cells. We confirmed that our protocol can also be applied to purify other varied AAV genome constructs. Our protocol can scale up production of pure rAAV9, in compliance with current good manufacturing practice, for clinical applications in human gene therapy

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Global Wheat Head Detection 2021: an improved dataset for benchmarking wheat head detection methods

    Get PDF
    The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated competition hosted in Kaggle, GWHD_2020 has successfully attracted attention from both the computer vision and agricultural science communities. From this first experience, a few avenues for improvements have been identified regarding data size, head diversity, and label reliability. To address these issues, the 2020 dataset has been reexamined, relabeled, and complemented by adding 1722 images from 5 additional countries, allowing for 81,553 additional wheat heads. We now release in 2021 a new version of the Global Wheat Head Detection dataset, which is bigger, more diverse, and less noisy than the GWHD_2020 version

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Genome-wide Association Study of Long COVID

    Get PDF
    SummaryInfections can lead to persistent or long-term symptoms and diseases such as shingles after varicella zoster, cancers after human papillomavirus, or rheumatic fever after streptococcal infections1, 2. Similarly, infection by SARS-CoV-2 can result in Long COVID, a condition characterized by symptoms of fatigue and pulmonary and cognitive dysfunction3–5. The biological mechanisms that contribute to the development of Long COVID remain to be clarified. We leveraged the COVID-19 Host Genetics Initiative6, 7to perform a genome-wide association study for Long COVID including up to 6,450 Long COVID cases and 1,093,995 population controls from 24 studies across 16 countries. We identified the first genome-wide significant association for Long COVID at theFOXP4locus.FOXP4has been previously associated with COVID-19 severity6, lung function8, and cancers9, suggesting a broader role for lung function in the pathophysiology of Long COVID. While we identify COVID-19 severity as a causal risk factor for Long COVID, the impact of the genetic risk factor located in theFOXP4locus could not be solely explained by its association to severe COVID-19. Our findings further support the role of pulmonary dysfunction and COVID-19 severity in the development of Long COVID.</jats:p
    corecore