17 research outputs found

    Optimized synthesis of indole carboxylate metallo-beta-lactamase inhibitor EBL-3183

    Get PDF
    A new synthetic route for the preparation of the metallo-β-lactamase inhibitor pre-candidate EBL-3183 was developed and carried out on a kilogram scale. The described process starts from a commercially available indole-2-carboxylate and employs an Ellman auxiliary approach coupled with ruthenium-catalyzed stereoselective reduction for the introduction of chirality. The key spirocyclic cyclobutane motif was assembled utilizing an epoxide building block, which was conveniently obtained in diastereomerically pure form. The amount and quality of the prepared final target EBL-3183 were sufficient for the preclinical studies

    Imitation of β-lactam binding enables broad-spectrum metallo-β-lactamase inhibitors

    Get PDF
    Carbapenems are vital antibiotics, but their efficacy is increasingly compromised by metallo-beta-lactamases (MBLs). Here we report the discovery and optimization of potent broad-spectrum MBL inhibitors. A high-throughput screen for NDM-1 inhibitors identified indole-2-carboxylates (InCs) as potential beta-lactamase stable beta-lactam mimics. Subsequent structure-activity relationship studies revealed InCs as a new class of potent MBL inhibitor, active against all MBL classes of major clinical relevance. Crystallographic studies revealed a binding mode of the InCs to MBLs that, in some regards, mimics that predicted for intact carbapenems, including with respect to maintenance of the Zn(II)-bound hydroxyl, and in other regards mimics binding observed in MBL-carbapenem product complexes. InCs restore carbapenem activity against multiple drug-resistant Gram-negative bacteria and have a low frequency of resistance. InCs also have a good in vivo safety profile, and when combined with meropenem show a strong in vivo efficacy in peritonitis and thigh mouse infection models.Peer reviewe

    Phenological shifts of abiotic events, producers and consumers across a continent

    Get PDF
    Ongoing climate change can shift organism phenology in ways that vary depending on species, habitats and climate factors studied. To probe for large-scale patterns in associated phenological change, we use 70,709 observations from six decades of systematic monitoring across the former Union of Soviet Socialist Republics. Among 110 phenological events related to plants, birds, insects, amphibians and fungi, we find a mosaic of change, defying simple predictions of earlier springs, later autumns and stronger changes at higher latitudes and elevations. Site mean temperature emerged as a strong predictor of local phenology, but the magnitude and direction of change varied with trophic level and the relative timing of an event. Beyond temperature-associated variation, we uncover high variation among both sites and years, with some sites being characterized by disproportionately long seasons and others by short ones. Our findings emphasize concerns regarding ecosystem integrity and highlight the difficulty of predicting climate change outcomes. The authors use systematic monitoring across the former USSR to investigate phenological changes across taxa. The long-term mean temperature of a site emerged as a strong predictor of phenological change, with further imprints of trophic level, event timing, site, year and biotic interactions.Peer reviewe

    Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology

    Get PDF
    We present an extensive, large-scale, long-term and multitaxon database on phenological and climatic variation, involving 506,186 observation dates acquired in 471 localities in Russian Federation, Ukraine, Uzbekistan, Belarus and Kyrgyzstan. The data cover the period 1890-2018, with 96% of the data being from 1960 onwards. The database is rich in plants, birds and climatic events, but also includes insects, amphibians, reptiles and fungi. The database includes multiple events per species, such as the onset days of leaf unfolding and leaf fall for plants, and the days for first spring and last autumn occurrences for birds. The data were acquired using standardized methods by permanent staff of national parks and nature reserves (87% of the data) and members of a phenological observation network (13% of the data). The database is valuable for exploring how species respond in their phenology to climate change. Large-scale analyses of spatial variation in phenological response can help to better predict the consequences of species and community responses to climate change.Peer reviewe

    Crystal Structures of New Ivermectin Pseudopolymorphs

    No full text
    New pseudopolymorphs of ivermectin (IVM), a potential anti-COVID-19 drug, were prepared. The crystal structure for three pseudopolymorphic crystalline forms of IVM has been determined using single-crystal X-ray crystallographic analysis. The molecular conformation of IVM in crystals has been compared with the conformation of isolated molecules modeled by DFT calculations. In a solvent with relatively small molecules (ethanol), IVM forms monoclinic crystal structure (space group I2), which contains two types of voids. When crystallized from solvents with larger molecules, like γ-valerolactone (GVL) and methyl tert-butyl ether (MTBE), IVM forms orthorhombic crystal structure (space group P212121). Calculations of the lattice energy indicate that interactions between IVM and solvents play a minor role; the main contribution to energy is made by the interactions between the molecules of IVM itself, which form a framework in the crystal structure. Interactions between IVM and molecules of solvents were evaluated using Hirshfeld surface analysis. Thermal analysis of the new pseudopolymorphs of IVM was performed by differential scanning calorimetry and thermogravimetric analysis

    Improved synthesis of the selected serine protease uPA inhibitor UAMC-00050, a lead compound for the treatment of dry eye disease

    No full text
    The α-aminophosphonate UAMC-00050, a newly developed trypsin-like serine protease inhibitor, is a lead compound for the treatment of dry eye syndrome and ocular inflammation. The medicinal chemistry route developed at the University of Antwerp possessed several problems hampering the scale-up such as poor yields for some of the steps, hazardous reagents, and environmental footprint. Herein, we report an optimized route for the UAMC-00050, in which environmental unfriendly solvents were excluded, hazardous reagents were replaced with safer alternatives, and are more efficient in terms of atom economy. Every reaction step was optimized to reach a higher yield, and design of experiment was used to find the optimum conditions in the last step. Furthermore, all the flash chromatography purifications of intermediates were replaced with plug filtration, slurry purifications, or crystallization. The overall yield was increased from 3% in the medicinal chemistry route to 22% in the process development route

    Diastereoselective Hydroxymethylation of Cyclic <i>N</i>-<i>tert</i>-Butanesulfinylketimines Using Methoxymethanol as Formaldehyde Source

    No full text
    Hydroxymethylation of cyclic <i>tert</i>-butanesulfinylketimine-derived lithium enamides with methoxymethanol proceeds with excellent diastereoselectivity (99:1 dr). Methoxymethanol is a stable and easy-to-handle source of anhydrous monomeric formaldehyde in the reaction with lithium enamides. Cyclic α-hydroxymethyl ketimines undergo highly diastereoselective reduction to <i>syn</i>- or <i>anti</i>-1,3-amino alcohols
    corecore