41 research outputs found

    Modern Advancement in Biotechnological Applications for Wastewater Treatment through Microalgae: a Review

    Get PDF
    ABSTRACT: Microalgae are microscopic organisms that have a broad range of applications, from wastewater treatment, CO2 mitigation to therapeutic proteins, and pharmaceuticals. Recently, the combination of wastewater treatment-based microalgae and the use of the obtained biomass as biofertilizers/stimulants/pesticides have been highly emphasized for their use in the agriculture field. Biofertilizers are a need of today's agriculture practices due to the increasing demand for food to feed a hungry planet while avoiding chemical contamination by the over-application of synthetic fertilizers. There is a constant need for modern techniques for the use of microalgae in a sustainable manner to harness their products to their full extent. Various types of bioreactors are available on the market, each with its own advantages and disadvantages, which, based on their efficiency, can be used for microalgae cultivation. This review aims at reporting recent developments in microalgae biotechnology, especially related to CO2 mitigation, wastewater purification, biofuel, feedstock, future food, therapeutic proteins, pharmaceuticals, and biofertilizers, highlighting some of the current research in this field and future development priorities.info:eu-repo/semantics/publishedVersio

    Preparation and Evaluation of Sodium Alginate Microparticles using Pepsin

    Get PDF
    Aim: The main aim of this article is to prepare and evaluate sodium alginate microparticles and evaluate on the basis of their characterization. The drug is dissolved, encapsulated or attached to a microparticles matrix. Depending upon method of preparation microparticles were obtained. Microparticles were developed as a carrier for vaccines and other disease like rheumatoid arthritis, cancer etc. Microparticles were developed to increase the efficacy of active pharmaceutical ingredient to a specific targeted site. Material and Method: Microparticles of Sodium Alginate, Pepsin and Calcium Chloride were prepared in six batches (A-F) with different ratio of sodium alginate and calcium chloride respectively i.e. (0.25:2.5), (0.25:5), (0.25:7.5), (0.5:2.5), (0.5:5), (0.5:7.5) by using a homogenizing method. Microparticles were evaluated for particle size distribution, zeta potential and morphology. Result and Discussion:  The normal particle size of each of the six batches were analyzed by Zeta Sizer (Delsa C Particle Analyzer) and it was found that the Batch B (0.25:5) delivered the best microparticles with size distribution of 1.2731 (µm). All batches were seen under Motic magnifying microscope by using the Sulforhodamine B (M.W. 479.02) color as staining dye. Microparticles was found to be semi spherical in shape. Conclusion: Results of all the six batches was contrasted based on particle size investigation, zeta potential and morphology. Batch B (0.25:5) was considered as the best formulation. Key words:  Micro Particle, Pepsin, Sodium Alginate and Calcium Chloride, Sulforhodamine B, Zeta Sizer

    Biosynthesis and characterization of silver nanoparticles generated from peels of Solanum tuberosum (potato) and their antibacterial and wastewater treatment potential

    Get PDF
    Global food production consumes a large fraction of energy budget, land area, and freshwater; however, a larger fraction of the produce is lost or unutilized, which has potential to produce useful products for human use. The biogenic synthesis of silver nanoparticles from such waste food appears to be a promising strategy. A conservative estimate of 70–140 thousand tons of potato peels is produced annually by food-chain companies globally; however, they are primarily utilized to produce substandard feed for livestock or manure. For the formation of highly profitable compounds, enhancement of value, and the process of extraction, such as nanocomposite, organic antioxidants, and organic meal inclusions, potato peels can be used as a cheap, productive, and readily available source of raw material. In the present research, silver nanoparticles (AgNPs) were extracted from the peels of potato (Solanum tuberosum). The fabrication of potato peel-derived AgNPs was established using UV-visible spectroscopy analysis. Approaches like X-ray diffraction (XRD), attenuated total reflection-infrared (ATR-IR) spectroscopy analysis, and field emission scanning electron microscopy (FESEM) were used to determine the characteristics of the AgNPs. Additionally, strains of Gram-positive bacteria such as Staphylococcus aureus (S. aureus) (ATCC 25923) and Gram-negative bacteria such as Escherichia coli (E. coli) (ATCC 25922) were used to determine the antibacterial activity of AgNPs via the disc diffusion technique. The antibacterial properties of AgNPs could help protect food from microbial contamination. Furthermore, AgNPs were tested for their potential application in purification of industrial wastewater. The results revealed that AgNPs derived from the potato peels could be used in industrial and biomedical applications and possess excellent antibacterial activity. Our research suggests that AgNPs can be extracted from a safe and ecofriendly fabrication technique from largely unused potato peels that have a great potential for inhibiting the bacterial growth and for the in situ purification of wastewater in the upcoming years. Therefore, besides value addition to the farm produce, such recycling of potato peels is likely to reduce the burden of the solid waste volumes in agro-centers, kitchen wastes, and food industries across the globe

    Hydroxychloroquine: A Comprehensive Review and Its Controversial Role in Coronavirus Disease 2019

    Get PDF
    Hydroxychloroquine, initially used as an antimalarial, is used as an immunomodulatory and anti-inflammatory agent for the management of autoimmune and rheumatic diseases such as systemic lupus erythematosus. Lately, there has been interest in its potential efficacy against severe acute respiratory syndrome coronavirus 2, with several speculated mechanisms. The purpose of this review is to elaborate on the mechanisms surrounding hydroxychloroquine. The review is an in-depth analysis of the antimalarial, immunomodulatory, and antiviral mechanisms of hydroxychloroquine, with detailed and novel pictorial explanations. The mechanisms of hydroxychloroquine are related to potential cardiotoxic manifestations and demonstrate potential adverse effects when used for coronavirus disease 2019 (COVID-19). Finally, current literature associated with hydroxychloroquine and COVID-19 has been analyzed to interrelate the mechanisms, adverse effects, and use of hydroxychloroquine in the current pandemic. Currently, there is insufficient evidence about the efficacy and safety of hydroxychloroquine in COVID-19.KEY MESSAGES HCQ, initially an antimalarial agent, is used as an immunomodulatory agent for managing several autoimmune diseases, for which its efficacy is linked to inhibiting lysosomal antigen processing, MHC-II antigen presentation, and TLR functions. HCQ is generally well-tolerated although severe life-threatening adverse effects including cardiomyopathy and conduction defects have been reported. HCQ use in COVID-19 should be discouraged outside clinical trials under strict medical supervision

    The 2nd competition on counter measures to 2D face spoofing attacks

    Get PDF
    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. I. Chingovska, J. Yang, Z. Lei, D. Yi, S. Z. Li, O. Kahm, C. Glaser, N. Damer, A. Kuijper, A. Nouak, J. Komulainen, T. Pereira, S. Gupta, S. Khandelwal, S. Bansal, A. Rai, T. Krishna, D. Goyal, M.-A. Waris, H. Zhang, I. Ahmad, S. Kiranyaz, M. Gabbouj, R. Tronci, M. Pili, N. Sirena, F. Roli, J. Galbally, J. Fiérrez, A. Pinto, H. Pedrini, W. S. Schwartz, A. Rocha, A. Anjos, S. Marcel, "The 2nd competition on counter measures to 2D face spoofing attacks" in International Conference on Biometrics (ICB), Madrid (Spain), 2013, 1-6As a crucial security problem, anti-spoofing in biometrics, and particularly for the face modality, has achieved great progress in the recent years. Still, new threats arrive inform of better, more realistic and more sophisticated spoofing attacks. The objective of the 2nd Competition on Counter Measures to 2D Face Spoofing Attacks is to challenge researchers to create counter measures effectively detecting a variety of attacks. The submitted propositions are evaluated on the Replay-Attack database and the achieved results are presented in this paper.The authors would like to thank the Swiss Innovation Agency (CTI Project Replay) and the FP7 European TABULA RASA Project4 (257289) for their financial support

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore