13 research outputs found

    Co-pyrolysis and co-gasification of biomass and polyethylene: Thermal behaviors, volatile products and characteristics of their residues

    No full text
    Co-pyrolysis and co-gasification of biomass and plastics could be a promising method to alleviate environmental pollution and provide renewable energy. In this paper, co-pyrolysis and co-gasification of eucalyptus wood (EW) or rice straw (RS) with polyethylene (PE) were investigated by a thermogravimetric analyzer coupled with a Fourier transform infrared spectrometer (TG-FTIR) and a scanning electron microscope coupled with energy-dispersive spectroscopy (SEM/EDS). Results showed that the pyrolysis behaviors were characterized by two stages. The first stage was the decomposition of EW and RS, and the second stage primarily consisted of the degradation of PE. The gasification exhibited a third stage for the reaction of products with CO2. A synergistic effect was presented in the pyrolysis and gasification of biomass with PE, and it could have a positive effect on the decomposition of biomass. Compared to individual pyrolysis and gasification, co-pyrolysis and co-gasification generated no new substances, but the yield of some products was changed in these processes. In co-pyrolysis, the decomposition of biomass was promoted. In co-gasification, the production of CH4, CO and oxygenated compounds was inhibited, while the reaction to generate H2O was promoted. Gasification and the addition of PE both increased the carbon content and reduced the oxygen content of volatile products. Additionally, more metal elements could be deposited in residues when PE was added. (C) 2018 Energy Institute. Published by Elsevier Ltd. All rights reserved

    Safety issues of tirzepatide (pancreatitis and gallbladder or biliary disease) in type 2 diabetes and obesity: a systematic review and meta-analysis

    No full text
    PurposeA systematic review and meta-analysis was conducted to synthesize the available data from clinical trials and assess the safety issues of tirzepatide (pancreatitis and gallbladder or biliary disease) in type 2 diabetes (T2D) and obesity.MethodsA systematic search was conducted in three electronic databases, namely Embase, PubMed, and the Cochrane Library, up until March 1, 2023, to identify randomized controlled trials (RCTs) comparing tirzepatide to either placebo or active hypoglycemic drugs in individuals with T2D and obesity. Heterogeneity was assessed using the I2 value and Cochran’s Q test, and a fixed effects model was employed to estimate the safety profile of tirzepatide. The safety outcomes of interest, including pancreatitis, the composite of gallbladder or biliary diseases, cholecystitis, and cholelithiasis and biliary diseases, were evaluated. (The composite of gallbladder or biliary diseases incorporated cholelithiasis, cholecystitis, other gallbladder disorders, and biliary diseases.)ResultsA total of nine trials with 9871 participants (6828 in the tirzepatide group and 3043 in the control group) that met the pre-specified criteria were included. When compared to all control groups consisting of basal insulin (glargine or degludec), selective GLP1-RA (dulaglutide or semaglutide once weekly), and placebo, an increased risk of pancreatitis was not found to be significantly associated with tirzepatide (RR 1.46, [95% CI] 0.59 to 3.61; I2 = 0.0%, p = 0.436). For gallbladder or biliary disease, the composite of gallbladder or biliary disease was significantly associated with tirzepatide compared with placebo or basal insulin (RR 1.97, [95% CI] 1.14 to 3.42; I2 = 0.0%, p = 0.558), but not with the risk of cholelithiasis, cholecystitis or biliary diseases.ConclusionBased on the currently available data, tirzepatide appears to be safe regarding the risk of pancreatitis. However, the increased risk of the composite outcome of gallbladder or biliary diseases observed in RCTs warrants further attention from physicians in clinical practice.Systematic review registrationhttps://www.crd.york.ac.uk/PROSPERO, identifier CRD42023412400

    Amphiphilic Cationic Peptide-Coated PHA Nanosphere as an Efficient Vector for Multiple-Drug Delivery

    No full text
    Amphiphilic core–shell (ACS) nanoparticles are gaining increasing research interest for multi-drug delivery in cancer therapy. In this work, a new cationic peptide-coated PHA nanosphere was prepared by self-assembly of a hydrophobic core of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and a hydrophilic shell of fusion proteins of PHA granule-associated protein (PhaP) and cationic peptide RALA through a strong hydrophobic effect. The hydrophobic drug curcumin (Cur) was encapsulated in PHBHHx nanoparticles. The chemotherapy drug 5-fluorouracil (5-FU) was administered in the form of its metabolite oligomeric 5-fluorodeoxyuridine (FUdR). Fifteen consecutive FUdR (FUdR15S) were adsorbed on the surface of PHBHHx nanoparticles by electrostatic interaction with RALA to form Cur@PHBX-PR/FUdR15S. Such amphiphilic cationic nanospheres had 88.3% EE of Cur and the drug loading of Cur and FUdR were 7.8% and 12.1%. The dual-drug-loaded nanospheres showed a time-differential release of Cur and FUdR. In addition, Cur@PHBX-PR/FUdR15S exhibited excellent anticancer activity and played a vital role in promoting the synergistic effect of FUdR and Cur in gastric cancer cells. The exploration of antitumor mechanisms demonstrated that Cur improved the activity of apoptosis-related proteins and cancer cells sensitized to FUdR. This amphiphilic core–shell system can serve as a general platform for sequential delivery of multiple drugs to treat several cancer cells

    Combined Developmental Toxicity of the Pesticides Difenoconazole and Dimethomorph on Embryonic Zebrafish

    No full text
    Difenoconazole (DIF) and dimethomorph (DIM) are widely used pesticides frequently detected together in environmental samples, so the deleterious effects of combined exposure warrant detailed examination. In this study, the individual and combined effects of DIM and DIF on conventional developmental parameters (hatching rate, deformity rate, lethality) and gene expression were measured in embryonic zebrafish. Both DIF and DIM interfered with normal zebrafish embryo development, and the most sensitive toxicity index for both was 96 h post-fertilization (hpf) deformity rate (BMDL10 values of 0.30 and 1.10 mg/L, respectively). The combination of DIF and DIM had mainly synergistic deleterious effects on 96 hpf deformity and mortality rates. Transcriptome analysis showed that these compounds markedly downregulated expression of mcm family genes, cdk1, and cdc20, thereby potentially disrupting DNA replication and cell cycle progression. Enhanced surveillance for this pesticide combination is recommended as simultaneous environmental exposure may be substantially more harmful than exposure to either compound alone

    Newly Synthesized High‐k Polymeric Dielectrics with Cyclic Carbonate Functionality for Highly Stability Organic Field‐Effect Transistor Applications

    No full text
    Abstract Organic field‐effect transistors (OFETs) with low‐voltage‐operating high‐stability are regarded as one of the key components of future electronics. However, it remains a challenge to enhance bias–stress stability, mechanical durability and environmental adaptability while reducing the operating voltage of the flexible OFETs. In this study, a new strategy of introducing high‐dipole‐moment groups into polymer side chains to enhance the intensity of polarization was proposed. This strategy can redirect cyclic carbonate side chains of high‐dipole groups under the action of electric fields and realize stable operation and efficient charge transfer. The experiments showed that high‐performance flexible OFETs were mainly attributed to the synthesized polymers through molecular structure designing which not only have high dielectric constant (k > 5) and high electrical insulating property but also favor the growth of organic semiconductor films. The flexible OFETs still showed excellent mechanical flexibility, high electrical, thermal and humidity stability. In addition, highly OFETs were applied into a floating‐gate memory with fullerene (C60) embedded charge memory layer and an integrated one‐transistor‐one‐transistor memory cell. They exhibited excellent memory performance with a large memory window (8.5 V), current ratio (103), stable retention (2 × 104 s), cyclic endurance (200 cycles), multi‐level memory (over 4 levels) and non‐destructivity

    Contact Engineering of Molybdenum Ditelluride Field Effect Transistors through Rapid Thermal Annealing

    No full text
    Understanding and engineering the interface between metal and two-dimensional materials are of great importance to the research and development of nanoelectronics. In many cases the interface of metal and 2D materials can dominate the transport behavior of the devices. In this study, we focus on the metal contacts of MoTe<sub>2</sub> (molybdenum ditelluride) FETs (field effect transistors) and demonstrate how to use post-annealing treatment to modulate their transport behaviors in a controlled manner. We have also carried out low temperature and transmission electron microscopy studies to understand the mechanisms behind the prominent effect of the annealing process. Changes in transport properties are presumably due to anti-site defects formed at the metal–MoTe<sub>2</sub> interface under elevated temperature. The study provides more insights into MoTe<sub>2</sub> field effect devices and suggests guidelines for future optimizations
    corecore