11 research outputs found

    Carrier Recombination and Generation Rates for Intravalley and Intervalley Phonon Scattering in Graphene

    Full text link
    Electron-hole generation and recombination rates for intravalley and intervalley phonon scattering in Graphene are presented. The transverse and the longitudinal optical phonon modes (E2gE_{2g}-modes) near the zone center (Γ\Gamma-point) contribute to intravalley interband carrier scattering. At the zone edge (K(K)K(K')-point), only the transverse optical phonon mode (A1A'_{1}-mode) contributes significantly to intervalley interband scattering with recombination rates faster than those due to zone center phonons. The calculated recombination times range from less than a picosecond to more than hundreds of picoseconds and are strong functions of temperature and electron and hole densities. The theoretical calculations agree well with experimental measurements of the recombination rates of photoexcited carriers in graphene.Comment: 6 pages, 9 figure

    Measurement of the Optical Absorption Spectra of Epitaxial Graphene from Terahertz to Visible

    Full text link
    We present experimental results on the optical absorption spectra of epitaxial graphene from the visible to the terahertz (THz) frequency range. In the THz range, the absorption is dominated by intraband processes with a frequency dependence similar to the Drude model. In the near IR range, the absorption is due to interband processes and the measured optical conductivity is close to the theoretical value of e2/4e^{2}/4\hbar. We extract values for the carrier densities, the number of carbon atom layers, and the intraband scattering times from the measurements

    Measurement of the Optical Absorption Spectra of Epitaxial Graphene from Terahertz to Visible

    Full text link
    We present experimental results on the optical absorption spectra of epitaxial graphene from the visible to the terahertz (THz) frequency range. In the THz range, the absorption is dominated by intraband processes with a frequency dependence similar to the Drude model. In the near IR range, the absorption is due to interband processes and the measured optical conductivity is close to the theoretical value of e2/4e^{2}/4\hbar. We extract values for the carrier densities, the number of carbon atom layers, and the intraband scattering times from the measurements

    Ultrafast Relaxation Dynamics of Hot Optical Phonons in Graphene

    Full text link
    Using ultrafast optical pump-probe spectroscopy, we study the relaxation dynamics of hot optical phonons in few-layer and multi-layer graphene films grown by epitaxy on silicon carbide substrates and by chemical vapor deposition on nickel substrates. In the first few hundred femtoseconds after photoexcitation, the hot carriers lose most of their energy to the generation of hot optical phonons which then present the main bottleneck to subsequent carrier cooling. Optical phonon cooling on short time scales is found to be independent of the graphene growth technique, the number of layers, and the type of the substrate. We find average phonon lifetimes in the 2.5-2.55 ps range. We model the relaxation dynamics of the coupled carrier-phonon system with rate equations and find a good agreement between the experimental data and the theory. The extracted optical phonon lifetimes agree very well with the theory based on anharmonic phonon interactions.Comment: 4 pages, 3 figure

    Thickness Estimation of Epitaxial Graphene on SiC using Attenuation of Substrate Raman Intensity

    Full text link
    A simple, non-invasive method using Raman spectroscopy for the estimation of the thickness of graphene layers grown epitaxially on silicon carbide (SiC) is presented, enabling simultaneous determination of thickness, grain size and disorder using the spectra. The attenuation of the substrate Raman signal due to the graphene overlayer is found to be dependent on the graphene film thickness deduced from X-ray photoelectron spectroscopy and transmission electron microscopy of the surfaces. We explain this dependence using an absorbing overlayer model. This method can be used for mapping graphene thickness over a region and is capable of estimating thickness of multilayer graphene films beyond that possible by XPS and Auger electron spectroscopy (AES).Comment: 14 pages, 9 figure

    Free-Standing Epitaxial Graphene On Silicon Carbide And Transport Barriers In Layered Materials

    Full text link
    This thesis is based on the topic of layered materials, in which different layers interact with each other via van der Waals forces. The majority of this thesis deals with epitaxial graphene (EG) obtained from silicon carbide (SiC). Free-standing epitaxial graphene (FSEG) structures are produced from EG using a photoelectrochemical (PEC) etching process developed for making suspended graphene structures on a large-scale. These structures are investigated for their mechanical and electrical properties. For doubly-clamped FSEG structures, a unique U-beam effect is observed which causes orders of magnitude increase in their mechanical resonance frequency compared to that expected using simple beam theory. Combined magnetotransport and Raman spectroscopy studies reveal that FSEG devices produced from nominally monolayer graphene on the Si-face of SiC exhibit properties of an inhomogeneously doped bilayer after becoming suspended. This suggests that the buffer layer which precedes graphene growth on the Si-face of SiC gets converted to a graphene layer after the PEC etching process. In the second theme of this thesis, transport barriers in layered materials are investigated. The EG-SiC interface is studied using a combination of electrical (I-V, C-V) and photocurrent spectroscopy techniques. It is shown that the interface may be described as having a Schottky barrier for electron transport with a Gaussian distribution of barrier heights. Another interface explored in this work is that between different layers of MoS2, a layered material belonging to the class of transition metal dichalcogenides. This interface maybe thought of as a one-dimensional junction. Fourpoint transport measurements indicate the presence of a barrier for electron transport at this interface. A simple model of the junction as a region with an increased threshold voltage and degraded mobility is suggested. The final chapter is a collection of works based on the topic of layered materials, which are not related to the main theme of the thesis. They include fabrication and characterization details of a dual-gated bilayer graphene device, an investigation of the graphene-Si interface and hexagonal boron nitride-based membranes. These are presented in the hope that they may be useful for further investigations along those directions

    van der Waals Epitaxial Growth of Graphene on Sapphire by Chemical Vapor Deposition without a Metal Catalyst

    No full text
    van der Waals epitaxial growth of graphene on <i>c</i>-plane (0001) sapphire by CVD without a metal catalyst is presented. The effects of CH<sub>4</sub> partial pressure, growth temperature, and H<sub>2</sub>/CH<sub>4</sub> ratio were investigated and growth conditions optimized. The formation of monolayer graphene was shown by Raman spectroscopy, optical transmission, grazing incidence X-ray diffraction (GIXRD), and low voltage transmission electron microscopy (LVTEM). Electrical analysis revealed that a room temperature Hall mobility above 2000 cm<sup>2</sup>/V·s was achieved, and the mobility and carrier type were correlated to growth conditions. Both GIXRD and LVTEM studies confirm a dominant crystal orientation (principally graphene [10–10] || sapphire [11–20]) for about 80–90% of the material concomitant with epitaxial growth. The initial phase of the nucleation and the lateral growth from the nucleation seeds were observed using atomic force microscopy. The initial nuclei density was ∼24 μm<sup>–2</sup>, and a lateral growth rate of ∼82 nm/min was determined. Density functional theory calculations reveal that the binding between graphene and sapphire is dominated by weak dispersion interactions and indicate that the epitaxial relation as observed by GIXRD is due to preferential binding of small molecules on sapphire during early stages of graphene formation
    corecore