101 research outputs found

    One-Pot Approach for Acoustic Directed Assembly of Metallic and Composite Microstructures by Metal Ion Reduction

    Full text link
    Acoustic-directed assembly is a modular and flexible bottom-up technique with the potential to pattern a wide range of materials. Standing acoustic waves have been previously employed for patterning preformed metal particles, however, direct patterning of metallic structures from precursors remains unexplored. Here, we investigate utilization of standing waves to exert control over chemical reaction products, while also exploring their potential in the formation of multi-layered and composite micro-structures. Periodic metallic micro-structures were formed in a single step, simplifying microstructure fabrication. Concentric structures were obtained by introducing a metal precursor salt and a reducing agent into a cylindrical piezoelectric resonator that also served as a reservoir. In addition, we introduce an innovative approach to directly fabricate metallic multi-layer and composite structures by reducing different metal ions or adding nanoparticles during the reduction step. Fewer steps are needed, compared with other methods, and there is no need to stabilize the nanoparticles or to ensure chemical affinity between the metallic matrix and inorganic nanoparticles. This innovative approach is promising for production of complex microstructures with enhanced functionality and controlled properties

    Laser Printing of Multilayered Alternately Conducting and Insulating Microstructures

    Get PDF
    Production of multilayered microstructures composed of conducting and insulating materials is of great interest as they can be utilized as microelectronic components. Current proposed fabrication methods of these microstructures include top-down and bottom-up methods, each having their own set of drawbacks. Laser-based methods were shown to pattern various materials with micron/sub-micron resolution; however, multilayered structures demonstrating conducting/insulating/conducting properties were not yet realized. Here, we demonstrate laser printing of multilayered microstructures consisting of conducting platinum and insulating silicon oxide layers by a combination of thermally driven reactions with microbubble-assisted printing. PtCl2 dissolved in N-methyl-2-pyrrolidone (NMP) was used as a precursor to form conducting Pt layers, while tetraethyl orthosilicate dissolved in NMP formed insulating silicon oxide layers identified by Raman spectroscopy. We demonstrate control over the height of the insulating layer between ∌50 and 250 nm by varying the laser power and number of iterations. The resistivity of the silicon oxide layer at 0.5 V was 1.5 × 1011 ωm. Other materials that we studied were found to be porous and prone to cracking, rendering them irrelevant as insulators. Finally, we show how microfluidics can enhance multilayered laser microprinting by quickly switching between precursors. The concepts presented here could provide new opportunities for simple fabrication of multilayered microelectronic devices

    Controlled Shape and Porosity of Polymeric Colloids by Photo-Induced Phase Separation

    No full text
    The shape and porosity of polymeric colloids are two properties that highly influence their ability to accomplish specific tasks. For micro-sized colloids, the control of both properties was demonstrated by the photo-induced phase separation of droplets of NOA81—a thiol-ene based UV-curable adhesive—mixed with acetone, water, and polyethylene glycol. The continuous phase was perfluoromethyldecalin, which does not promote phase separation prior to UV activation. A profound influence of the polymer concentration on the particle shape was observed. As the photo-induced phase separation is triggered by UV radiation, polymerization drives the extracted solution out of the polymeric matrix. The droplets of the extracted solution coalesce until they form a dimple correlated to the polymer concentration, significantly changing the shape of the formed solid colloids. Moreover, control could be gained over the porosity by varying the UV intensity, which governs the kinetics of the reaction, without changing the chemical composition; the number of nanopores was found to increase significantly at higher intensities

    Directed assembly of nanoparticles into continuous microstructures by standing surface acoustic waves

    No full text
    Directed-assembly by standing surface acoustic waves (SSAWs) only requires an acoustic contrast between particles and their surrounding medium. It is therefore highly attractive as this requirement is fulfilled by almost all dispersed systems. Previous studies utilizing SSAWs demonstrated mainly reversible microstructure arrangements from nanoparticles. The surface chemistry of colloids dramatically influences their tendency to aggregate and sinter; therefore, it should be possible to form permanent microstructures with intimate contact between nanoparticles by controlling this property. Dispersed silver nanoparticles in a microfluidic channel were exposed to SSAWs and reversibly accumulated at the pressure nodes. We show that addition of chloride ions that remove the polyacrylic capping of the nanoparticles trigger their sintering and the formation of stable conducting silver microstructures. Moreover, if the destabilizing ions are added prior to nanoparticle assembly while continuously streaming the dispersion through the acoustic aperture, the induced aggregation leads to formation of significantly thinner microstructures, which are (for the first time) unlimited in length by the acoustic apparatus. This new approach overcomes the discrepancy between the need for organic dispersants to prevent unwanted aggregation in the dispersion, and the end product's requirement for intimate contact between the colloidal particles

    Microfluidic-based linear-optics label-free imager

    No full text
    Linear optics based nanoscopy previously reached resolution beyond the diffraction limit, illuminating samples in the visible light regime while allowing light to interact with freely moving metallic nanoparticles. However, the hydrodynamics governing the nanoparticle motion used to scan the sample is very complex and has low probability of achieving appropriate and fast mapping in practice. Hence, an implementation of the technique on real biological samples has not been demonstrated so far. Moreover, a suitable way to perform controlled nanoparticle scanning of biological samples is required. Here we show a solution where a microfluidic channel is used to flow and trap biological samples inside a water droplet along with suspended nanoparticles surrounded by silicone oil. The evanescent light scattered from the sample and is rescattered by the nanoparticles in the vicinity. This encodes the sub-wavelength features of the sample which can later on be decoded and reconstructed from measurements in the far field. The microfluidic system-controlled flow allows better nanoparticle scanning of the sample and maintains an isolated system for each sample in each droplet. A more localized scan at the droplet water/oil interface is also conducted using amphiphilic nanoparticles where their hydrophilic side is constrained to the droplet and their hydrophobic side is constrained to the oil. This allows higher probability of capturing evanescent fields closer to their origin, yielding better resolution and a higher signal to noise ratio. Using this system, we obtained images of an E. coli sample and demonstrated how the method yield fine resolution of the sample contours. To the best of our knowledge, this is the first time that a linear and label free optics imaging process was performed using a micro-fluidic device

    Acoustic Manipulation of Intraocular Particles

    No full text
    Various conditions cause dispersions of particulate matter to circulate inside the anterior chamber of a human eye. These dispersed particles might reduce visual acuity or promote elevation of intraocular pressure (IOP), causing secondary complications such as particle related glaucoma, which is a major cause of blindness. Medical and surgical treatment options are available to manage these complications, yet preventive measures are not currently available. Conceptually, manipulating these dispersed particles in a way that reduces their negative impact could prevent these complications. However, as the eye is a closed system, manipulating dispersed particles in it is challenging. Standing acoustic waves have been previously shown to be a versatile tool for manipulation of bioparticles from nano-sized extracellular vesicles up to millimeter-sized organisms. Here we introduce for the first time a novel method utilizing standing acoustic waves to noninvasively manipulate intraocular particles inside the anterior chamber. Using a cylindrical acoustic resonator, we show ex vivo manipulation of pigmentary particles inside porcine eyes. We study the effect of wave intensity over time and rule out temperature changes that could damage tissues. Optical coherence tomography and histologic evaluations show no signs of damage or any other side effect that could be attributed to acoustic manipulation. Finally, we lay out a clear pathway to how this technique can be used as a non-invasive tool for preventing secondary glaucoma. This concept has the potential to control and arrange intraocular particles in specific locations without causing any damage to ocular tissue and allow aqueous humor normal outflow which is crucial for maintaining proper IOP levels
    • 

    corecore