1,475 research outputs found
Computerized polar plots by a cathode ray tube/grid overlay method
Overlay is aligned with four calibration dots so it is not affected by CRT drift or changes in vertical or horizontal gain when producing Nyquist /frequency-response phase/amplitude/ plots. Method produces over 50 plots per hour
Recommended from our members
Estimating the Seasonality of Bent-Nose Clam (Macoma nasuta) Harvesting at a 3,000-Year-Old Ancestral Ohlone Site (CA-ALA-11) on the San Francisco Bay
This article investigates the harvest month for bent-nose clams (Macoma nasuta) at CA-ALA-11, an estuarine site in the modern-day city of Alameda along the San Francisco Bay. The archaeological deposit in which the clam shells were recovered dates primarily to the Early Period (3,350–2,550 cal BP) and Early-Middle Transition (2,550–2,150 cal BP), although some activity continues through 2,650 BP. Season of harvest estimates for clams offers insight into Indigenous use of estuarine resources and the degree of sedentism or length of habitation at this locality. Water salinity varies predictably in San Francisco Bay, from annual lows in winter to highs in summer. We used oxygen isotopes (δ18O) to estimate season of harvest by sampling at the intact terminal growth edge of the shell, which records salinity at the time of harvest. Three additional samples represent earlier periods of shell growth. Results show that while clams comprise a minority of the shellfish harvested, clamming took place between January and August, with a marked peak in mid-winter (February). There is no evidence for fall harvesting, which suggests that people were either not living at CA-ALA-11 during this time or focused on acquiring other seasonally available foods. We compare these results to previously published data on seasonality of clam harvesting from five other San Francisco Bay area sites
Signing on a Postcard
We investigate the problem of signing short messages using a scheme that minimizes the total length of the original message and the appended signature. This line of research was motivated by several postal services interested by stamping machines capable of producing digital signatures. Although several message recovery schemes exist, their security is questionable. This paper proposes variants of DSA and ECDSA allowing partial recovery: the signature is appended to a truncated message and the discarded bytes are recovered by the verification algorithm
An efficient quantum algorithm for the hidden subgroup problem in extraspecial groups
Extraspecial groups form a remarkable subclass of p-groups. They are also
present in quantum information theory, in particular in quantum error
correction. We give here a polynomial time quantum algorithm for finding hidden
subgroups in extraspecial groups. Our approach is quite different from the
recent algorithms presented in [17] and [2] for the Heisenberg group, the
extraspecial p-group of size p3 and exponent p. Exploiting certain nice
automorphisms of the extraspecial groups we define specific group actions which
are used to reduce the problem to hidden subgroup instances in abelian groups
that can be dealt with directly.Comment: 10 page
A faster pseudo-primality test
We propose a pseudo-primality test using cyclic extensions of . For every positive integer , this test achieves the
security of Miller-Rabin tests at the cost of Miller-Rabin
tests.Comment: Published in Rendiconti del Circolo Matematico di Palermo Journal,
Springe
A Machine-Checked Formalization of the Generic Model and the Random Oracle Model
Most approaches to the formal analyses of cryptographic protocols make the perfect cryptography assumption, i.e. the hypothese that there is no way to obtain knowledge about the plaintext pertaining to a ciphertext without knowing the key. Ideally, one would prefer to rely on a weaker hypothesis on the computational cost of gaining information about the plaintext pertaining to a ciphertext without knowing the key. Such a view is permitted by the Generic Model and the Random Oracle Model which provide non-standard computational models in which one may reason about the computational cost of breaking a cryptographic scheme. Using the proof assistant Coq, we provide a machine-checked account of the Generic Model and the Random Oracle Mode
Self-consistent theory of reversible ligand binding to a spherical cell
In this article, we study the kinetics of reversible ligand binding to
receptors on a spherical cell surface using a self-consistent stochastic
theory. Binding, dissociation, diffusion and rebinding of ligands are
incorporated into the theory in a systematic manner. We derive explicitly the
time evolution of the ligand-bound receptor fraction p(t) in various regimes .
Contrary to the commonly accepted view, we find that the well-known
Berg-Purcell scaling for the association rate is modified as a function of
time. Specifically, the effective on-rate changes non-monotonically as a
function of time and equals the intrinsic rate at very early as well as late
times, while being approximately equal to the Berg-Purcell value at
intermediate times. The effective dissociation rate, as it appears in the
binding curve or measured in a dissociation experiment, is strongly modified by
rebinding events and assumes the Berg-Purcell value except at very late times,
where the decay is algebraic and not exponential. In equilibrium, the ligand
concentration everywhere in the solution is the same and equals its spatial
mean, thus ensuring that there is no depletion in the vicinity of the cell.
Implications of our results for binding experiments and numerical simulations
of ligand-receptor systems are also discussed.Comment: 23 pages with 4 figure
Group Diffie-Hellman Key Exchange Secure against Dictionary Attacks
Group Diffie-Hellman schemes for password-based key exchange are designed to provide a pool of players communicating over a public network, and sharing just a human-memorable password, with a session key (e.g, the key is used for multicast data integrity and confidentiality) . The fundamental security goal to achieve in this scenario is security against dictionary attacks. While solutions have been proposed to solve this problem no formal treatment has ever been suggested. In this paper, we define a security model and then present a protocol with its security proof in both the random oracle model and the ideal-cipher model
Time and length scales of autocrine signals in three dimensions
A model of autocrine signaling in cultures of suspended cells is developed on
the basis of the effective medium approximation. The fraction of autocrine
ligands, the mean and distribution of distances traveled by paracrine ligands
before binding, as well as the mean and distribution of the ligand lifetime are
derived. Interferon signaling by dendritic immune cells is considered as an
illustration.Comment: 15 page
- …