1,475 research outputs found

    Computerized polar plots by a cathode ray tube/grid overlay method

    Get PDF
    Overlay is aligned with four calibration dots so it is not affected by CRT drift or changes in vertical or horizontal gain when producing Nyquist /frequency-response phase/amplitude/ plots. Method produces over 50 plots per hour

    Signing on a Postcard

    Get PDF
    We investigate the problem of signing short messages using a scheme that minimizes the total length of the original message and the appended signature. This line of research was motivated by several postal services interested by stamping machines capable of producing digital signatures. Although several message recovery schemes exist, their security is questionable. This paper proposes variants of DSA and ECDSA allowing partial recovery: the signature is appended to a truncated message and the discarded bytes are recovered by the verification algorithm

    An efficient quantum algorithm for the hidden subgroup problem in extraspecial groups

    Get PDF
    Extraspecial groups form a remarkable subclass of p-groups. They are also present in quantum information theory, in particular in quantum error correction. We give here a polynomial time quantum algorithm for finding hidden subgroups in extraspecial groups. Our approach is quite different from the recent algorithms presented in [17] and [2] for the Heisenberg group, the extraspecial p-group of size p3 and exponent p. Exploiting certain nice automorphisms of the extraspecial groups we define specific group actions which are used to reduce the problem to hidden subgroup instances in abelian groups that can be dealt with directly.Comment: 10 page

    A faster pseudo-primality test

    Get PDF
    We propose a pseudo-primality test using cyclic extensions of Z/nZ\mathbb Z/n \mathbb Z. For every positive integer klognk \leq \log n, this test achieves the security of kk Miller-Rabin tests at the cost of k1/2+o(1)k^{1/2+o(1)} Miller-Rabin tests.Comment: Published in Rendiconti del Circolo Matematico di Palermo Journal, Springe

    A Machine-Checked Formalization of the Generic Model and the Random Oracle Model

    Get PDF
    Most approaches to the formal analyses of cryptographic protocols make the perfect cryptography assumption, i.e. the hypothese that there is no way to obtain knowledge about the plaintext pertaining to a ciphertext without knowing the key. Ideally, one would prefer to rely on a weaker hypothesis on the computational cost of gaining information about the plaintext pertaining to a ciphertext without knowing the key. Such a view is permitted by the Generic Model and the Random Oracle Model which provide non-standard computational models in which one may reason about the computational cost of breaking a cryptographic scheme. Using the proof assistant Coq, we provide a machine-checked account of the Generic Model and the Random Oracle Mode

    Self-consistent theory of reversible ligand binding to a spherical cell

    Full text link
    In this article, we study the kinetics of reversible ligand binding to receptors on a spherical cell surface using a self-consistent stochastic theory. Binding, dissociation, diffusion and rebinding of ligands are incorporated into the theory in a systematic manner. We derive explicitly the time evolution of the ligand-bound receptor fraction p(t) in various regimes . Contrary to the commonly accepted view, we find that the well-known Berg-Purcell scaling for the association rate is modified as a function of time. Specifically, the effective on-rate changes non-monotonically as a function of time and equals the intrinsic rate at very early as well as late times, while being approximately equal to the Berg-Purcell value at intermediate times. The effective dissociation rate, as it appears in the binding curve or measured in a dissociation experiment, is strongly modified by rebinding events and assumes the Berg-Purcell value except at very late times, where the decay is algebraic and not exponential. In equilibrium, the ligand concentration everywhere in the solution is the same and equals its spatial mean, thus ensuring that there is no depletion in the vicinity of the cell. Implications of our results for binding experiments and numerical simulations of ligand-receptor systems are also discussed.Comment: 23 pages with 4 figure

    Group Diffie-Hellman Key Exchange Secure against Dictionary Attacks

    Get PDF
    Group Diffie-Hellman schemes for password-based key exchange are designed to provide a pool of players communicating over a public network, and sharing just a human-memorable password, with a session key (e.g, the key is used for multicast data integrity and confidentiality) . The fundamental security goal to achieve in this scenario is security against dictionary attacks. While solutions have been proposed to solve this problem no formal treatment has ever been suggested. In this paper, we define a security model and then present a protocol with its security proof in both the random oracle model and the ideal-cipher model

    Time and length scales of autocrine signals in three dimensions

    Get PDF
    A model of autocrine signaling in cultures of suspended cells is developed on the basis of the effective medium approximation. The fraction of autocrine ligands, the mean and distribution of distances traveled by paracrine ligands before binding, as well as the mean and distribution of the ligand lifetime are derived. Interferon signaling by dendritic immune cells is considered as an illustration.Comment: 15 page
    corecore