7,474 research outputs found

    Earth observations from space: Outlook for the geological sciences

    Get PDF
    Remote sensing from space platforms is discussed as another tool available to geologists. The results of Nimbus observations, the ERTS program, and Skylab EREP are reviewed, and a multidisciplinary approach is recommended for meeting the challenges of remote sensing

    Thermal expansion of graphite-epoxy between 116 K and 366 K

    Get PDF
    A Priest laser interferometer was developed to measure the thermal strain of composite laminates. The salient features of this interferometer are that: (1) it operates between 116 K and 366 K; (2) it is easy to operate; (3) minimum specimen preparation is required; (4) coefficients of thermal expansion in the range of 0-5 micro epsilon/K can be measured; and (5) the resolution of thermal strain is on the order of micro epsilon. The thermal response of quasi-isotropic, T300/5208, grahite-epoxy composite material was studied with this interferometer. The study showed that: (1) for the material tested, thermal cycling effects are negligible; (2) variability of thermal response from specimen to specimen may become significant at cryogenic temperatures; and (3) the thermal response of 0.6 cm and 2.5 cm wide specimens are the same above room temperature

    Development of a Priest interferometer for measurement of the thermal expansion of a graphite epoxy in the temperature range 116-366 K

    Get PDF
    The thermal expansion behavior of graphite epoxy laminates between 116 and 366 degrees Kelvin was investigated using as implementation of the Priest interferometer concept. The design, construction and use of the interferometer along with the experimental results it was used to generate are described. The experimental program consisted of 25 tests on 25.4 mm and 6.35 mm wide, 8 ply pi/4 quasi-isotropic T300-5208 graphite/epoxy specimens and 3 tests on a 25.4 mm wide unidirectional specimen. Experimental results are presented for all tests along with a discussion of the interferometer's limitations and some possible improvements in its design

    Towards the production of radiotherapy treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility studies

    Get PDF
    Background: Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be distressing for patients and the shells do not always fit perfectly. In addition the mould room process can be time consuming. With recent developments in three-dimensional (3D) printing technologies comes the potential to generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring radiotherapy treatment will have had a computed tomography (CT) scan and if a computer model of a shell could be obtained directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and possibly enable the patient to start their radiotherapy treatment more quickly. Purpose: This paper focuses on the first stage of generating the front part of the shell and investigates the dosimetric properties of the materials to show the feasibility of 3D printer materials for the production of a radiotherapy treatment shell. Materials and methods: Computer algorithms are used to segment the surface of the patient’s head from CT and MRI datasets. After segmentation approaches are used to construct a 3D model suitable for printing on a 3D printer. To ensure that 3D printing is feasible the properties of a set of 3D printing materials are tested. Conclusions: The majority of the possible candidate 3D printing materials tested result in very similar attenuation of a therapeutic radiotherapy beam as the Orfit soft-drape masks currently in use in many UK radiotherapy centres. The costs involved in 3D printing are reducing and the applications to medicine are becoming more widely adopted. In this paper we show that 3D printing of bespoke radiotherapy masks is feasible and warrants further investigation

    Superconductivity and Cobalt Oxidation State in Metastable Na(x)CoO(2-delta)*yH2O (x ~ 1/3; y ~ 4x)

    Full text link
    We report the synthesis and superconducting properties of a metastable form of the known superconductor NaxCoO2*yH2O (x ~ 1/3, y ~ 4x). Instead of using the conventional bromine-acetonitrile mixture for sodium deintercalation, we use an aqueous bromine solution. Using this method, we oxidize the sample to a point that the sodium cobaltate becomes unstable, leading to formation of other products if not controlled. This compound has the same structure as the reported superconductor, yet it exhibits a systematic variation of the superconducting transition temperature (Tc) as a function of time. Immediately after synthesis, this compound is not a superconductor, even though it contains appropriate amounts of sodium and water. The samples become superconducting with low Tc values after ~ 90 h. Tc continually increases until it reaches a maximum value (4.5 K) after about 260 h. Then Tc drops drastically, becoming non-superconducting approximately 100 h later. Corresponding time-dependent neutron powder diffraction data shows that the changes in superconductivity exhibited by the metastable cobaltate correspond to slow formation of oxygen vacancies in the CoO2 layers. In effect, the formation of these defects continually reduces the cobalt oxidation state causing the sample to evolve through its superconducting life cycle. Thus, the dome-shaped superconducting phase diagram is mapped as a function of cobalt oxidation state using a single sample. The width of this dome based on the formal oxidation state of cobalt is very narrow - approximately 0.1 valence units wide. Interestingly, the maximum Tc in NaxCoO2*yH2O occurs when the cobalt oxidation state is near 3.5. Thus, we speculate that the maximum Tc occurs near the charge ordered insulating state that correlates with the average cobalt oxidation state of 3.5.Comment: 22 pages, 9 figures, 1 tabl

    Standard Operating Procedures and Guidelines for the Ohio State Farm Business Analysis Program

    Get PDF
    • …
    corecore