92 research outputs found

    Interference Analysis between Crack and General Inclusion in an Infinite Plate by Body Force Method

    Get PDF
    A continously embedded force doublet over the particular region can be regarded as the distributing eigen strain. This fact implies that many sorts of inelastic strain can be replaced by the force doublet. In the present paper, the force doublet is used to alter the local constitutive relationship. As a result, a method for analyzing the general inclusion problem in which the material properties of the inclusion are not only different from those of the matrix material but also can be even a function of spacial coordinate variables is proposed. The theoretical background of the present analysis is explained followed by some representative numerical results.12th International Conference on Fracture and Damage Mechanics, FDM 2013; Sardinia; Italy; 17 September 2013 through 19 September 201

    Post mortem activation of human blood fibrinolytic enzyme in sudden and natural deaths

    Get PDF
    With the purpose to elucidate the cause and difference of blood fluidity in sudden death and natural one, we have observed the fibrinolysis of the blood in medico-legal and pathological autopsies by means of Fibrin Plate Method, a routine method devised in our laboratory. As the result it has been found that in the blood serum of sudden death and in some of natural deaths from tumors, leukemias, etc., the decrease in fibrinolytic activity is equivalent to the amount of proactivator that combined with the SK-like substance liberated into blood. On the other hand, in the blood of most of natural deaths, and in that bled from vessels and stored in body cavities, no natural fibrinolysis is observable and the same fibrinolytic activity with SK as normal one is demonstrated. Thus it is concluded that the cause of blood fluidity in sudden death is due to the fibrinolysis.</p

    Involvement of the accumbal osteopontin-interacting transmembrane protein 168 in methamphetamine-induced place preference and hyperlocomotion in mice

    Get PDF
    Chronic exposure to methamphetamine causes adaptive changes in brain, which underlie dependence symptoms. We have found that the transmembrane protein 168 (TMEM168) is overexpressed in the nucleus accumbens of mice upon repeated methamphetamine administration. Here, we firstly demonstrate the inhibitory effect of TMEM168 on methamphetamine-induced behavioral changes in mice, and attempt to elucidate the mechanism of this inhibition. We overexpressed TMEM168 in the nucleus accumbens of mice by using an adeno-associated virus vector (NAc-TMEM mice). Methamphetamine-induced hyperlocomotion and conditioned place preference were attenuated in NAc-TMEM mice. Additionally, methamphetamine-induced extracellular dopamine elevation was suppressed in the nucleus accumbens of NAc-TMEM mice. Next, we identified extracellular matrix protein osteopontin as an interacting partner of TMEM168, by conducting immunoprecipitation in cultured COS-7 cells. TMEM168 overexpression in COS-7 cells induced the enhancement of extracellular and intracellular osteopontin. Similarly, osteopontin enhancement was also observed in the nucleus accumbens of NAc-TMEM mice, in in vivo studies. Furthermore, the infusion of osteopontin proteins into the nucleus accumbens of mice was found to inhibit methamphetamine-induced hyperlocomotion and conditioned place preference. Our studies suggest that the TMEM168-regulated osteopontin system is a novel target pathway for the therapy of methamphetamine dependence, via regulating the dopaminergic function in the nucleus accumbens

    Natural ligand-nonmimetic inhibitors of the lipid-transfer protein CERT

    Get PDF
    Lipid transfer proteins mediate inter-organelle transport of membrane lipids at organelle contact sites in cells, playing fundamental roles in the lipidome and membrane biogenesis in eukaryotes. We previously developed a ceramide-mimetic compound as a potent inhibitor of the ceramide transport protein CERT. Here we develop CERT inhibitors with structures unrelated to ceramide. To this aim, we identify a seed compound with no ceramide-like structure but with the capability of forming a hydrogen-bonding network in the ceramide-binding START domain, by virtual screening of ~3 × 106 compounds. We also establish a surface plasmon resonance-based system to directly determine the affinity of compounds for the START domain. Then, we subject the seed compound to a series of in silico docking simulations, efficient chemical synthesis, affinity analysis, protein-ligand co-crystallography, and various in vivo assays. This strategy allows us to obtain ceramide-unrelated compounds that potently inhibited the function of CERT in human cultured cells

    Assessment of the Initial Diagnostic Accuracy of a Fragility Fracture of the Sacrum: A Study of 56 Patients

    Get PDF
    Study Design Retrospective study. Purpose To investigate the clinical manifestations of a fragility fracture of the sacrum (FFS) and the factors that may contribute to a misdiagnosis. Overview of Literature The number of patients diagnosed with FFS has increased because of extended life expectancy and osteoporosis. Patients with FFS may report nonspecific symptoms, such as back, buttock, groin, and/or leg pain, leading to a misdiagnosis and a delay in definitive diagnosis. Methods Fifty-six patients (13 males and 43 females) with an average age of 80.2±9.2 years admitted to the hospital for FFS between 2006 and 2021 were analyzed retrospectively. The following patient data were collected using medical records: pain regions, a history of trauma, initial diagnoses, and rates of fracture detection using radiography, computed tomography (CT), and magnetic resonance imaging (MRI). Results Forty-one patients presented with low back and/or buttock pain, nine presented with groin pain, and 17 presented with thigh or leg pain. There was no history of trauma in 18 patients (32%). At the initial visit, 27 patients (48%) were diagnosed with sacral or pelvic fragility fractures. In contrast, 29 patients (52%) were initially misdiagnosed with lumbar spine disease (23 patients), hip joint diseases (three patients), and buttock bruises (three patients). Fracture detection rates for FFS were 2% using radiography, 71% using CT, and 93% using MRI. FFS was diagnosed definitively using an MRI with a coronal short tau inversion recovery (STIR) sequence. Conclusions Some patients with FFS have leg pain with no history of trauma and are initially misdiagnosed as having lumbar spine disease, hip joint disease, or simple bruises. When these clinical symptoms are reported, we recommend considering FFS as one of the differential diagnoses and performing lumbar or pelvic MRIs, particularly coronal STIR images, to rule out FFS

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    Fabrication Method for Shape-Controlled 3D Tissue Using High-Porosity Porous Structure

    No full text
    Shape-controlled 3D tissues resemble natural living tissues in human and animal bodies and are essential materials for developing and improving technologies in regenerative medicine, drug discovery, and biological robotics. In previous studies, shape-controlled 3D tissues were fabricated using scaffold structures or 3D bioprinting techniques. However, controlling the shape of 3D tissues without leaving non-natural materials inside the 3D tissue and efficiently fabricating them remains challenging. In this paper, we propose a novel method for fabricating shape-controlled 3D tissues free of non-natural materials using a flexible high-porosity porous structure (HPPS). The HPPS consisted of a micromesh with pore sizes of 14.87 ± 1.83 μm, lattice widths of 2.24 ± 0.10 μm, thicknesses of 9.96 ± 0.92 μm, porosity of 69.06 ± 3.30%, and an I-shaped microchamber of depth 555.26 ± 11.17 μm. U-87 human glioma cells were cultured in an I-shaped HPPS microchamber for 48 h. After cultivation, the 3D tissue was released within a few seconds while maintaining its I-shape. Specific chemicals, such as proteolytic enzymes, were not used. Moreover, the viability of the released cells composed of shape-controlled 3D tissues free of non-natural materials was above 90%. Therefore, the proposed fabrication method is recommended for shape-controlled 3D tissues free of non-natural materials without applying significant stresses to the cells

    Novel Quick Cell Patterning Using Light-Responsive Gas-Generating Polymer and Fluorescence Microscope

    No full text
    Conventional cell patterning methods are mainly based on hydrophilic/hydrophobic differences or chemical coating for cell adhesion/non-adhesion with wavering strength as it varies with the substrate surface conditions, including the cell type and the extracellular matrix components (ECMs) coating; thus, the versatility and stability of cell patterning methods must be improved. In this study, we propose a new cell patterning method using a light-responsive gas-generating polymer (LGP) and a conventional fluorescence microscope. Herein, cells and cellular tissues are easily released from the substrate surface by the nitrogen gas bubbles generated from LGP by the excitation light for fluorescence observation without harming the cells. The LGP-implanted chip was fabricated by packing LGP into a polystyrene (PS) microarray chip with a concave pattern. HeLa cells were spread on the LGP-implanted chips coated with three different ECMs (fibronectin, collagen, and poly-D-lysine), and all HeLa cells on the three LGP patterns were released. The pattern error between the LGP pattern and the remaining HeLa cells was 8.81 &plusmn; 4.24 &mu;m, less than single-cell size. In addition, the LGP-implanted chip method can be applied to millimeter-scale patterns, with less than 30 s required for cell patterning. Therefore, the proposed method is a simple and rapid cell patterning method with high cell patterning accuracy of less than the cell size error, high scalability, versatility, and stability unaffected by the cell type or the ECM coating
    corecore