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Natural ligand-nonmimetic inhibitors
of the lipid-transfer protein CERT

Naoki Nakao!, Masaharu Ueno@® 24, Shota Sakai®, Daichi Egawa3, Hiroyuki Hanzawa', Shohei Kawasaki,
Keigo Kumagai3, Makoto Suzuki', Shu Kobayashi® 2 & Kentaro Hanada® 3

Lipid transfer proteins mediate inter-organelle transport of membrane lipids at organelle
contact sites in cells, playing fundamental roles in the lipidome and membrane biogenesis in
eukaryotes. We previously developed a ceramide-mimetic compound as a potent inhibitor of
the ceramide transport protein CERT. Here we develop CERT inhibitors with structures
unrelated to ceramide. To this aim, we identify a seed compound with no ceramide-like
structure but with the capability of forming a hydrogen-bonding network in the ceramide-
binding START domain, by virtual screening of ~3 x 106 compounds. We also establish a
surface plasmon resonance-based system to directly determine the affinity of compounds for
the START domain. Then, we subject the seed compound to a series of in silico docking
simulations, efficient chemical synthesis, affinity analysis, protein-ligand co-crystallography,
and various in vivo assays. This strategy allows us to obtain ceramide-unrelated compounds
that potently inhibited the function of CERT in human cultured cells.
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play dynamic roles in organelle structure and function. In

eukaryotes, the endoplasmic reticulum (ER) is the main
center for the synthesis of diverse lipid types in cells, and lipids
newly synthesized in the ER are delivered to other organelles by a
variety of lipid-transfer proteins (LTPs), which mediate inter-
organelle transport at organelle membrane contact sites in a
nonvesicular manner!=3. Thus, LTPs play fundamental roles in
the regulation of the lipidome and membrane biogenesis in cells.
Moreover, several LTPs have roles beyond that of an inter-
membrane lipid carrier. For example, an oxysterol-binding pro-
tein not only mediates sterol transfer from the ER to the Golgi
apparatus but also functions as a cholesterol-dependent scaf-
folding protein in the extracellular signal-regulated kinase path-
way®°. Hence, LTPs have been rapidly gaining attention as a
novel type of molecular medicinal target. Nevertheless, specific
inhibitors of LTPs are limited.

The ceramide transport protein CERT, a typical LTP,
mediates the transport of ceramide from the ER to the Golgi
apparatus, in which ceramide is converted to the phospho-
sphingolipid sphingomyelin (SM)®7. CERT has several
advantages as a model LTP for the development of novel
inhibitors with a rational strategy. First, various assay systems
to analyze the activities of CERT and its functional modules
have been established®. Second, the physiological roles of
CERT in various organisms from cultured cells to model
animals (e.g., fruit fly, zebrafish, and mouse) have been elu-
cidated®8-10, Of note, a point mutation that renders CERT to
be constitutively active is the causative mutation responsible
for a human hereditary mental development disorder with an
autosomal dominant inheritance!!l. Thus, CERT was demon-
strated to be a key player in the homeostasis of the
ceramide-SM axis of the cellular lipidome, and it follows that
its dysregulation leads to pathological outcomes. Additionally,
co-crystallography of the ceramide-binding START domain of
CERT with multiple types of ceramide species was resolved!2.
Moreover, a potent inhibitor of CERT named (1R, 3S)-HPA-
12, which contains a ceramide-like moiety, was previously
developed and characterized!3-17. Although several deriva-
tives of ceramides and HPA-12 were shown to have enhanced
binding affinity for the CERT START domain under cell-free
conditions!8-20, it is not known whether these new derivatives
are capable of inhibiting CERT in living cells more potently
than the original HPA-12. HPA-12 binds to the ceramide-
binding pocket in the CERT START domain, thereby acting as
a competitive antagonist, whereas it does not affect the
ceramide-metabolizing enzymes, including ceramide synthase,
SM synthase, ceramidase, and sphingomyelinase. Never-
theless, HPA-12 might serve as a direct ligand for one or more
yet-to-be determined proteins that recognize ceramides.
Similar concerns inevitably accompany artificial compounds
having structural mimicry to a natural ligand. Namely, natural
ligand-mimetic compounds may directly bind to not only the
desired target but also to various undesired targets sharing the
same natural ligand.

Herein, we describe the development of a series of small
chemicals with no apparent ceramide mimicry, but with
potent activity to inhibit the function of CERT in human
cultured cells. The establishment of the ligand-mimetic
and nonmimetic inhibitor sets of CERT may provide a phar-
macological tool to discriminate on-target effects from off-
target effects when CERT is pharmacologically inhibited as the
same pathophysiological consequences induced by a pair
of structurally dissimilar inhibitors are attributable
directly or indirectly to the inhibition of CERT, not to off-target
effects.

I ipids are the major constituents of all cell membranes and

Results

Physical affinity of compounds for CERT. To determine the
physical affinity of low-molecular-weight chemicals for CERT, we
developed a quantitative assay system in which purified recom-
binant CERT START domain was immobilized on a surface
plasmon resonance (SPR) sensor, and then the system was vali-
dated using the known CERT inhibitor HPA-12. After analyzing
the affinity of four stereoisomers of HPA-12 for the CERT START
domain, the Ky values of the (1R, 3S)-, (1S, 3R)-, (1S, 3S)-, and
(1R, 3R)-isomers were estimated to be ~30, > 10,000, ~4500, and
~4000 nM, respectively (Fig. la, b and Supplementary Fig. 1).
These Ky values were almost identical to those obtained for the
full-size CERT (Fig. 1b and Supplementary Fig. 1). These results
were qualitatively consistent with previous studies using living
cells'>10 and indirect competitive cell-free assays?!, although
smaller differences in the binding activities among the HPA
stereoisomers were reported in the indirect competitive assay
systems?!. The newly developed assay system enabled us to
determine the Ky values of short-chain C,-ceramide (Kq = 93 nM)
and Cg-ceramide (Kg = 58 nM) for CERT (Supplementary Fig. 1),
showing that a hydrophobic interaction between the acyl chain of
ceramides and the ligand-recognition pocket of the START
domain contributes to the ligand affinity in line with a previous
study on co-crystals of the START domain in complex with
various ceramide species!?. The affinity for the long-chain C,¢-
ceramide could not be tested because of its poor water miscibility.
Collectively, we concluded that the SPR assay system may be
useful to accurately determine the Ky values of small compounds
for the CERT START domain.

Virtual screening of ceramide-unlike compounds for CERT. To
identify seed compounds that were not structurally similar to
ceramide, we exploited previously solved three-dimensional (3D)
structures of the CERT START domain in complex with natural
ceramides and ceramide-mimetic inhibitors for protein-chemical
compound docking-based in silico screening (Supplementary
Fig. 3). After virtual screening of ~3 x 10° compounds, we found
one candidate hereafter referred to as seed compound 1 (SC1),
which has no apparent ceramide-like structure (Fig. 1c). The SPR
assay demonstrated that SC1 bound to the CERT START domain
with a K4 value of ~12uM (Fig. 1c). Moreover, X-ray crystal-
lography analysis confirmed the predicted hydrogen-bonding
network between SC1 and the ceramide-binding pocket in the co-
crystal complex (Fig. 1d and Supplementary Fig. 3). Based on
these results, we determined SC1 was a promising initial com-
pound for the development of a natural ligand-nonmimetic
inhibitor of CERT.

Various derivative series of SC1. For the systematic expansion of
SC1 derivatives, the structural backbone of the seed compound
needed to be simple but adaptable to combinatorial synthesis.
Thus, we examined the dispensability of the fluorine, methyl, and
azole groups of SC1 to interact with the CERT START domain.
Elimination of the fluorine or methyl group or both together did
not reduce the affinity for CERT (Supplementary Fig. 2).
Importantly, changing the azole moiety to C=C, C—C, cis C=C,
trans C=C, or racemic cyclopropyl groups did not abrogate the
interaction with CERT, although none of these groups sub-
stantially increased the affinity compared with the azole group
(Supplementary Fig. 2). Thus, we decided to simplify the azole
moiety to these five groups for the construction of chemical
derivative panels. The five series of compounds having a C=C, C
—C, cis C=C, trans C=C, or cis cyclopropyl group in place of the
azole were referred to as the A, B, C, D, and E series, respectively
(Supplementary Fig. 2). Then, the various compounds of these
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Fig. 1 Virtual screening of ceramide-nonmimetic inhibitors of CERT. a Structure of Cis-ceramide, (1R, 3S)-HPA-12. b Affinities of (1R, 35)-HPA-12 for the
full-size CERT and CERT START domain immobilized on an SPR sensor chip were determined. The K4 values were obtained by kinetics fitting of the SPR
data. € Seed compound 1 (SC1) for novel CERT inhibitors without ceramide-like structures. An SPR sensor gram of the immobilized CERT START domain at
various concentrations of SC1 as the analyte is shown. The Ky value was determined by the affinity-fitting method because it could not be determined by
the kinetics fitting. d Capturing of SC1 by CERT. Co-crystallography of the CERT START domain in complex with SC1 is shown. Red dashed lines, hydrogen
bonds (distances are indicated in angstroms); red balls, water molecules. Residual electron density is represented as UNX (unknown atom or ion)

five series were synthesized (Supplementary METHODS, and
Supplementary Figs. 10-32), and analyzed for their affinity
toward the CERT START domain. Notably, we used a one-pot
tandem reaction system for efficient chemical synthesis of the A-
series compounds except for A15 (Supplementary METHODS).

When fluorine or methyl or both were added to these five series
in the same manner as the initial seed compound SC1, the affinity
for CERT tended to be slightly improved in all five series (Fig. 2
and Supplementary Fig. 2). Among them, E3 exhibited the best
affinity (Kq=>5.6 uM). The co-crystal structure of the CERT
START domain with SC1 showed considerable space at the 3-
position of the second aromatic moiety (Fig. 1d and Supplemen-
tary Fig. 2). The addition of a tert-butyl group to the 3-position
clearly enhanced the CERT affinity in the B and E series (the
derivatives are named B5 and E5, respectively), while it somewhat
abrogated the affinity in the other three series (Fig. 2 and
Supplementary Fig. 2). Co-crystal analysis revealed that the
additional tert-butyl group in B5 and E5 did not affect the
hydrogen-bonding pattern of the hydroxyethanesulfonyl group,
but unexpectedly caused the reorientation of the distal aromatic

group (Fig. 3). This reorientation enabled B5 and E5 to occupy
the hydrophobic pocket in a more “ceramide-like” manner
compared with SC1 (Fig. 3 and Supplementary Fig. 3).

High-affinity CERT inhibitors with no ceramide-like moiety.
We synthesized more derivatives in the A-E series, and eventually
identified an encouraging compound named E14 with a Kq=
~0.7uM for the CERT START domain (Fig. 2). E14 has an
n-propyl group at the 4-position of the 1,1’-biphenyl moiety
(Fig. 4a). We subjected E14 and other compounds to metabolic
lipid-labeling experiments to determine their effect on the func-
tion of CERT in human cervical cancer-derived HeLa cells
(Fig. 4b). At 1uM, El14 inhibited the labeling of SM by ~50%
while it did not affect the metabolic labeling of glyco-
sphingolipids, phosphatidylserine or phosphatidylethanolamine,
all of which are synthesized by CERT-independent pathways.
The prototype of the E series (E1) with no alkyl group at the
4-position of the 1,1’-biphenyl moiety did not inhibit the
synthesis of SM in line with its undetectable affinity for the CERT
START domain (Fig. 2 and Supplementary Fig. 2).
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Fig. 2 Compounds with various levels of affinity for the CERT START
domain. a Chemical structures of compounds. b Affinity for the CERT
START domain. The affinity of compounds for the CERT START domain
immobilized on SPR sensor chips were analyzed. The Ky values (the mean
values £ SD from three experiments) were determined by kinetics fitting.
Both R! and R2 in these compounds are hydrogens. Note that the E-series
compounds are racemic at the cis cyclopropyl linker. N.D., not determined

X-ray crystallography revealed an empty space at the end of the
n-propyl group of E14 in the complex with the CERT START
domain (Fig. 4c). Thus, we designed new derivatives to better fit
the space and found various compounds with high affinity for the
CERT START domain in vitro (Fig. 2) and with the capability to
effectively inhibit the function of CERT in cells (Fig. 4b). Among
them, E16 and E25, the two compounds exhibiting the highest
affinity (Kg, ~90nM for E16 and ~180nM for E25) for the
START domain, were further examined by X-ray crystallography.
In the co-crystals, the two compounds were accommodated in the
ceramide-binding pocket of the START domain with essentially
the same orientation pattern as described for E5 and El14: the
hydroxyethanesulfonyl group formed a hydrogen-bonding net-
work, while the hydrophobic moieties occupied the hydrophobic
interior of the pocket (Figs 3, 4c, and Supplementary Fig. 4). The
alkyl group at the 4-position of the 1,1’-biphenyl moiety of the E
compounds was extended to a space where the N-acyl moiety of
ceramide occupies in the complex with natural ceramide, while
the distal aromatic group of the E compounds was extended to a
space where the sphingoid base moiety occupies in the ceramide
complex (Figs. 3, 4c, and Supplementary Figs. 3 and 4). Although
El4, E16, and E25 are racemic at the cyclopropane-linker part,
only one enantiomer ((1S, 2R)-isomer) was detected in the co-
crystals (Fig. 4c, and Supplementary Fig. 4), suggesting this
specific enantiomer has higher CERT affinity. In the co-crystal,
there was an empty space beyond the distal end of the pentyl
group at the 4-position in E16 (Supplementary Fig. 4c). However,
longer alkyl groups at the same position (E22-25) did not
improve the affinity for the START domain (Fig. 2). These results

suggested that n-pentyl group was nearly the optimal alkyl length
at the 4-position.

Separated enantiomers of E16 and E25. Compounds of the E
series were mixtures of the cis-racemate at the cyclopropyl-linker
moiety. Both enantiomers of E16 and E25 could be separated by
high-performance liquid chromatography (HPLC) with a chiral
oligosaccharide-conjugated silica gel. The separated isoforms
were tentatively referred to as E16A, E16B, E25A, and E25B, in
which the A- and B-types represented the isomers with faster and
slower mobilities in the HPLC, respectively (Supplementary
Fig. 33). X-ray crystallography of the separated enantiomers in
complex with the CERT START domain showed that the A-type
has the (1S, 2R)-configuration at the cyclopropyl linker in E16
and E25 (Fig. 5b, c). Additionally, the (1R, 2S)-configuration of
E25B was confirmed by co-crystallography (Fig. 5d), while we
failed to obtain a co-crystal with E16B suitable for X-ray dif-
fraction analysis. From SPR analysis, the Ky values of E16A,
E16B, E25A, and E25B for the CERT START domain were
determined to 61, 1300, 88, and 1700 nM, respectively (Figs 2,
5a). The higher affinity of the A-type compounds compared with
their B-type counterparts was consistent with the fact that only
the A-type was observed in the co-crystals of the CERT START
domain prepared with the racemic E series compounds (Figs 3,
4c, and Supplementary Fig. 4). Additionally, the distal pyridine
ring of E25B was disordered in the co-crystal compared with the
ring of E25A (Fig. 5¢, d), explaining the lower affinity of the B-
type compounds. B16 and D16 bound to the CERT START
domain with essentially the same stereochemical conformation as
E16A (Fig. 5b and Supplementary Fig. 4).

(1S, 2R)-HPCB-5, a ceramide-nonmimetic inhibitor of CERT.
The E16 and E25 enantiomers were analyzed in various
bioassays. None of these compounds affected the growth of
Hela cells in the normal culture medium containing 10%
serum up to 10 uM (Fig. 6a). In line with their Ky values for
CERT, the A-types of E16 and E25 were found to be more
potent inhibitors than their B-type counterparts: the IC5, values
of E16A and E25A in the presence of 10% serum were 0.18 and
0.25 uM, respectively, while those of E16B and E25B were 0.76
and 1.93 uM, respectively (Fig. 6b). The ICsy values of the most
active isomer HPA-12, (IR, 3S)-HPA-12, and its enantiomer
(1S, 3R)-HPA-12 were 0.2 and >3 uM, respectively (Fig. 6b).
These results indicated that E16A acts as a highly potent CERT
inhibitor in cultured cells similar to (1R, 3S)-HPA-12. Between
the enantiomers E16A and B, there was only a approximately
fourfold difference in the ICs, values (0.18 vs. 0.76 uM) for the
inhibition of SM synthesis in living cells whereas a ~20-fold
difference in the K4 values (61 vs. 1300 nM) in the cell-free SPR
assay was observed. Although the reasons for this quantitative
inconsistency are not clear, in cultured cells E16A and B might
be slightly different in their stability, membrane permeability,
and/or protein binding among other factors.

We next examined possible off-target effects. Brefeldin A
(BFA) is a pharmacological tool used to merge the Golgi
apparatus with the ER. In cells treated with BFA, the conversion
of ceramide to SM occurs in the ER/Golgi merged structure in a
CERT-independent manner!3-22, (1R, 35)-HPA-12 or the E-series
compounds (E16A, E16B, E25A, and E25B) did not affect the
synthesis of SM in BFA-treated HeLa cells (Fig. 6¢), eliminating
the possibility that E16A directly inhibited SM synthases.
Myriocin/ISP-1, a specific inhibitor of serine palmitoyltransfer-
ase?3, clearly inhibited the metabolic labeling of SM regardless of
BFA (Fig. 6¢), ruling out the possibility that BFA treatment non-
specifically rendered the cells tolerant to sphingolipid inhibitors.
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Fig. 3 X-ray crystallography of the CERT START domain in complex with B5 and E5. a Co-crystal images of the CERT START domain in complex with B5
and E5 are shown. Red dashed lines: hydrogen bonds (distances are indicated in angstrom). Blue meshes indicate electron density of the bound compound
contoured at 3sigma. b Overlaid images of B5 (represented as magenta, left of panel) and E5 (represented as green, right of panel) with SC1 (represented
as pink) bound to the CERT START domain. ¢ Overlaid images of B5 (magenta), E5 (green), and SC1 (pink) bound to the CERT START domain

We also examined the effects of CERT inhibitors on the lipidome
of cells. For lipidome analysis, we used a serum-free medium for
cell culture because the use of a metabolic inhibitor to reduce the
amount of certain types of cellular sphingolipids may be
compensated by serum-derived sphingolipids**. When HeLa

cells were cultured in the presence of the inhibitors for 3 days,
(1R, 35)-HPA-12, E16A, and E25A reduced the amount of SM to
~40% of the drug-untreated control level, while the amounts of
other lipid types were not significantly affected (Fig. 6d and
Supplementary Figs. 6 and 7).
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Fig. 4 Ceramide-nonmimetic inhibitors of CERT are effective in living cells. a Structures of novel compounds capable of potently inhibiting CERT. b Inhibition
of the function of CERT in Hela cells by various compounds. Hela cells were cultured in serum-free medium with the indicated compounds at 1uM (or the
vehicle DMSO for the non-treated control) and in the presence of radioactive serine for 24 h. Then, the levels of labeled lipids per protein were determined.
Data are shown as the relative values of the vehicle control. The mean values + SD from three experiments are shown. ¢ Co-crystallography of the CERT
START domain in complex with E14 is shown. Note that although E14 is racemic at the cis cyclopropyl linker, co-crystals with the (1S, 2R)-enantiomer were

predominantly obtained (see also text)

Mammalian cells have at least two pathways to deliver
ceramide from the ER to the Golgi for the synthesis of
SM®2225 One is the CERT-dependent nonvesicular pathway,
and another is a yet-to-be elucidated CERT-independent path-
way. Thus, CERT-deficient cells still exhibit a low but detectable
capability of de novo synthesis of SM®222>. Whereas (IR, 3S)-
HPA-12, E16A, and E25A reduced the metabolic labeling of SM
to ~10% of the non-treated control in wild-type HeLa cells, they
did not affect the labeling of SM in CERT-disrupted HeLa cells
(Fig. 6e and Supplementary Fig. 5), indicating that the
compounds inhibit the CERT-dependent synthesis of SM, but
not CERT-independent synthesis.

The miscibility of CERT inhibitors in culture medium was
checked by turbidimetric analysis. Neither discernible turbidity
was induced by 30 uM E16A, B16, nor HPA-12 (Supplementary
Fig. 8), suggesting that these CERT inhibitors were soluble up to
at least 30 uM in the normal culture medium. We next compared
the stability of these CERT inhibitors in the culture medium.
When these compounds were incubated in the cell-free culture
medium containing 10% serum at 37°C, they exhibited no
appreciable loss up to at least 72 h as shown by quantitative mass
spectrometry analysis (Supplementary Fig. 9a). To analyze the
stability of the compounds co-cultured with living cells, E16A,
B16, and HPA-12 were added to HeLa cells at 3puM and

cultivated for various time periods. Then the levels of the CERT
inhibitors retrieved from the medium were quantified. The levels
of E16A, B16, and HPA-12 retrieved from the culture medium
slowly decreased throughout 72h (Supplementary Fig. 9b),
suggesting gradual degradation of the inhibitors in the cell
culture. This is in agreement with a recent study showing in vivo
degradation of fluorinated HPA-12 in mice2°. The cell-associated
levels of these compounds reached peaks during the initial 4 h,
partially decreased, and then plateaued up to 72 h (Supplemen-
tary Fig. 9¢). Interestingly, the plateau levels of E16A and B16
were three- to fourfold higher than the level of HPA-12
(Supplementary Fig. 9c). Although the actual reason for this
difference is unknown, HPA-12 might be more favorably trapped
by serum proteins (e.g., albumin and lipoproteins), or more
preferentially exported from cells (e.g., via multidrug ABC
transporters), compared with E16A and B16. These results
suggest that E16A and B16 exert slightly more prolonged activity
than HPA-12 in cell culture.

We hereafter renamed E16A to (1S, 2R)-HPCB-5, or
abbreviated it to HPCB-5 after its chemical name of 4'-(2-
hydroxyethanesulfonyl)-4-pentyl-3-(2-(pyridin-2-yl)-(1S, ~ 2R)-
cyclopropyl)-1,1'-biphenyl (the 5 of HPCB-5 represents the C5
pentyl group). Although B16 was slightly less active as a CERT
inhibitor than E16 (Fig. 4b), the fact that B16 does not contain
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Fig. 5 An optimized CERT inhibitor with a specific stereochemistry. After stereochemical separation of the racemic compounds E16 and E25, four purified
compounds, E16A, E16B, E25A, and E25B, were obtained. a SPR sensor grams of the immobilized CERT START domain at various concentrations of the four
compounds as the analytes are shown. E16A and E25A showed higher affinity than their counterparts E16B and E25B. Co-crystallography of E16A or (1S,
2R)-HPCB-5 (b), E25A (c), and E25B (d) in complex with the CERT START domain was also performed. Red dashed lines: hydrogen bonds (distances are
indicated in angstroms). According to the co-crystallography, the stereochemical structures of the compounds are depicted in the right part of the panels.
In the co-crystals, E16A, E25B, and E25B are captured interacting with almost the identical protein conformation, forming hydrogen-bonding networks with
specific amino acid residues (glutamic acid 446, glutamine 467, asparagine 504, and tyrosine 553) and hydrophobic interactions with the inner surface of
the ceramide-biding pocket in the CERT START. Notably, the distal pyridine ring of E25B, not E25A, is disordered in the complex, which may support the
lower affinity of E25B
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chirality at the linker moiety between the pyridinyl and phenyl
groups is advantageous for scaling up its chemical synthesis.
Thus, we hereafter referred to B16 as HPEB-5 after its chemical
name: 4’-(2-hydroxyethanesulfonyl)-4-pentyl-3-(pyridin-2-
ylethyl)-1,1"-biphenyl).

Discussion

The availability of LTP inhibitors remains very limited except
for a few LTP types, including sterol or oxysterol transfer pro-
teins?’~30 and CERT!31417:19 (1R, 35)-HPA-12 and its closely
related compounds have so far been the only potent inhibitors of
CERT effective in living cells!31417:2631 " Iminosugar-based
structures were recently shown to be another type of ceramide-
mimicking CERT inhibitor, although their effectiveness toward
living cells remains unclear!®. In the present study, we developed
(1S, 2R)-HPCB-5 as a novel potent CERT inhibitor with no
apparent structural similarity to ceramides. To achieve this, there
were several key experimental steps. First, virtual screening
enabled us to screen millions of known compounds and identify a
seed compound in a few months. This was owing to the pre-
viously resolved 3D structure of START, the ceramide-binding
domain of CERT, in complex with natural ceramides!? and
ceramide-mimetic inhibitors!31417. Second, the determination
that the azole group of the initial seed compound could be
replaced with simpler structures without detrimental effects on
the affinity toward the START domain lead us to rational syn-
thetic routes to obtain a variety of seed derivatives using com-
binatorial chemistry. One-pot tandem reactions also facilitated
the chemical synthesis of the A-series compounds. Third, the
SPR-based assay system was useful to determine the absolute K4
values of chemical compounds for the START domain, thereby
enabling us to efficiently select superior candidates among the
virtually screened primary candidates. Fourth, there were reliable
assay systems to evaluate the activity of the compounds to inhibit
the function of CERT in living cells by employing various tools
(e.g., BFA and CERT KO mutant HeLa cell lines) useful to assess
the off-target effects of the selected compounds. Using these
multidisciplinary approaches in concert, we identified a series of
novel ceramide-unrelated compounds that potently inhibited the
function of CERT in human cultured cells. The overall strategy
may be applicable to other LTPs for the development of natural
ligand-nonmimetic inhibitors.

Polar groups in a ceramide molecule are limited to only the 1-
hydroxyl, 3-hydroxyl, and 2-amido groups (Fig. 1a). All three of
these polar groups form a hydrogen-bonding network with spe-
cific amino acid residues in the CERT START domain, while van
der Waals interactions between the hydrophobic moiety of cer-
amide and the inner surface of the ceramide-binding pocket in
the START domain are also crucial for the recognition of cer-
amide by CERT!2. HPA-12 is recognized by the CERT START
domain in a similar manner!”. (1S, 2R)-HPCB-5 shares two
common features necessary for the high-affinity recognition by
the CERT START domain. The hydroxyethanesulfonyl group in
HPCB-5 forms hydrogen-bonding networks with specific amino
acids in the START domain similar to ceramide (Fig. 5 and
Supplementary Fig. 2). Moreover, the three aryl groups and n-
pentyl groups of HPCB-5 with an appropriate conformation
allow the compound to sufficiently occupy the hydrophobic
pocket of the START domain (Fig. 5). Presumably, these are the
most crucial structural features responsible for the ability of
HPCB-5 with no ceramide-like structure to inhibit CERT with a
similar degree of potency as the partial ceramide mimicry HPA-
12. It should also be noted that enhancing the affinity of the lipid
ligands for their cytoplasmic binding proteins by increasing their
hydrophobicity often results in decreases in their water miscibility

and plasma membrane permeability, making them less effective
toward living cells. In terms of the compounds developed in the
present study, the K, values determined by the cell-free SPR assay
were well correlated to their potency levels for inhibiting CERT in
living HeLa cells (Figs. 2, 4b), implying that the polar and
membrane-permeable nature of the compounds also contributes
to the ability of HPCB-5 to act as a potent CERT inhibitor in
living cells.

Beyond its primary function to deliver ceramide from the ER to
the Golgi apparatus, CERT participates in various biological
events, including polyploid cancer cell death3?, EGF receptor
signaling33, lipotoxicity and glucolipotoxicity in islet B-cells>3,
muscle insulin signaling®®, stress-induced Golgi disassembly’,
protein secretions38, phosphoinositide turnover at the trans Golgi
network3?, cytotoxic autophagy?’, and senescence*!. Addition-
ally, pharmacological or genetic inhibition of CERT negatively
affects the proliferation of several types of intracellular patho-
gens*2-46. Moreover, a point mutation causing the loss of
repressive phosphorylation in the human CERT gene results in a
hereditary mental development disorder with an autosomal
dominant inheritance!l. CERT inhibitors may serve as pharma-
ceutical seed compounds to prevent or ameliorate human dis-
eases. A recent study suggested that a fluorinated derivative of
HPA-12 can serve as an in vivo probe of CERT in positron
emission tomography (PET) imaging?®. A fluorinated HPCB-5
may also serve as a PET probe of CERT. Moreover, CERT and/or
its longer splicing isoform CERT} (or Goodpasture antigen-
binding protein), both of which have the intact ceramide-transfer
START domain®, were demonstrated to bind various extracellular
proteins, including type IV collagen*’*8, serum amyloid P-
component?’, and the complement factor C1q°°. New CERT
inhibitors may also be a useful tool to investigate the pathophy-
siological meaning of interactions between CERT/CERT} and
extracellular proteins, although it remains elusive whether the
proposed extracellular functions of CERT/CERT], are relevant to
its ceramide-transfer activity. Additionally, (1R, 3S)-HPA-12 and
(1S, 2R)-HPCB-5 (and/or HPEB-5) together may provide a
robust tool to discriminate on-target effects from off-target effects
when CERT is pharmacologically inhibited as the same patho-
physiological consequences induced by a pair of structurally
dissimilar inhibitors are attributable directly or indirectly to the
inhibition of CERT, not to off-target effects.

Methods
Materials and synthetic procedures. See Supplementary Methods and Supple-
mentary Figures 10-33.

Virtual screening of a seed compound. See Supplementary Methods.
Purification of the CERT START domain. See Supplementary Methods.

SPR experiments. See Supplementary Methods and Supplementary Figures 1-2.
Protein crystallization. See Supplementary Methods.

Diffraction data collection and structure determination. See Supplementary
Methods, Supplementary Figures 3-4, and Supplementary Table 1.

Bioassays within cell culture. See Supplementary Methods, Supplementary Fig-
ures 5-7.

Stability of CERT inhibitors. See Supplementary Figures 8-9.

Data availability

Crystallographic data have been deposited in the PDB with identifiers (6J00, 5ZYG,
5ZYH, 6]81, 5ZYI, 5ZYK, 5ZY], 5ZYL, 5ZYM, 61EZ, and 6IF0). Raw data (including 'H-
and 13C-NMR charts of synthesized compounds) obtained in this study are available
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