104 research outputs found

    A morphological study of waves in the thermosphere using DE-2 observations

    Get PDF
    Theoretical model and data analysis of DE-2 observations for determining the correlation between the neutral wave activity and plasma irregularities have been presented. The relationships between the observed structure of the sources, precipitation and joule heating, and the fluctuations in neutral and plasma parameters are obtained by analyzing two measurements of neutral atmospheric wave activity and plasma irregularities by DE-2 during perigee passes at an altitude on the order of 300 to 350 km over the polar cap. A theoretical model based on thermal nonlinearity (joule heating) to give mode-mode coupling is developed to explore the role of neutral disturbance (winds and gravity waves) on the generation of plasma irregularities

    Scheduling MapReduce Jobs under Multi-Round Precedences

    Full text link
    We consider non-preemptive scheduling of MapReduce jobs with multiple tasks in the practical scenario where each job requires several map-reduce rounds. We seek to minimize the average weighted completion time and consider scheduling on identical and unrelated parallel processors. For identical processors, we present LP-based O(1)-approximation algorithms. For unrelated processors, the approximation ratio naturally depends on the maximum number of rounds of any job. Since the number of rounds per job in typical MapReduce algorithms is a small constant, our scheduling algorithms achieve a small approximation ratio in practice. For the single-round case, we substantially improve on previously best known approximation guarantees for both identical and unrelated processors. Moreover, we conduct an experimental analysis and compare the performance of our algorithms against a fast heuristic and a lower bound on the optimal solution, thus demonstrating their promising practical performance

    Designing cost-sharing methods for Bayesian games

    Get PDF
    We study the design of cost-sharing protocols for two fundamental resource allocation problems, the Set Cover and the Steiner Tree Problem, under environments of incomplete information (Bayesian model). Our objective is to design protocols where the worst-case Bayesian Nash equilibria, have low cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance is a very natural requirement, it puts considerable restrictions on the design space, resulting in high PoA. We propose an alternative, relaxed requirement called budget balance in the equilibrium (BBiE).We show an interesting connection between algorithms for Oblivious Stochastic optimization problems and cost-sharing design with low PoA. We exploit this connection for both problems and we enforce approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More interestingly, we show how to obtain the same bounds on the PoA, by using anonymous posted prices which are desirable because they are easy to implement and, as we show, induce dominant strategies for the players

    A simple randomised algorithm for convex optimisation: Application to two-stage stochastic programming

    Get PDF
    We consider maximising a concave function over a convex set by a simple randomised algorithm. The strength of the algorithm is that it requires only approximate function evaluations for the concave function and a weak membership oracle for the convex set. Under smoothness conditions on the function and the feasible set, we show that our algorithm computes a near-optimal point in a number of operations which is bounded by a polynomial function of all relevant input parameters and the reciprocal of the desired precision, with high probability. As an application to which the features of our algorithm are particularly useful we study two-stage stochastic programming problems. These problems have the property that evaluation of the objective function is #P-hard under appropriate assumptions on the models. Therefore, as a tool within our randomised algorithm, we devise a fully polynomial randomised approximation scheme for these function evaluations, under appropriate assumptions on the models. Moreover, we deal with smoothing the feasible set, which in two-stage stochastic programming is a polyhedron

    Improved approximation algorithms for shop scheduling problems

    Full text link
    This paper published in Proceedings of the International Congress of Mathematicians, Kyoto, Japan (1990), 1595-160

    Probe-Fed Strip-Element Microstrip Phased Arrays: E- and H-Plane Scan Resonances and Broadbanding Gu

    No full text

    The Demand Matching Problem

    No full text
    informs ® doi 10.1287/moor.1070.0254 © 2007 INFORMS We examine formulations for the well-known b-matching problem in the presence of integer demands on the edges. A subset M of edges is feasible if for each node v the total demand of edges in M incident to v is at most bv. We examine the system of star inequalities for this problem. This system yields an exact linear description for b-matchings in bipartite graphs. For the demand version, we show that the integrality gap for this system is at least 2.5 and at most 2.764. For general graphs, the gap lies between 3 and 3.264. We also describe a 3-approximation algorithm (2.5 for bipartite graphs) for the cardinality version of the problem. A fully polynomial approximation scheme is also presented for the problem on a tree, thus generalising a well-known result for the knapsack problem. Recently, the notion of demand matching has arisen in the design of Clos network switches. Key words: b-matching; linear programming; integrality gap; approximation algorith
    • …
    corecore