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The rf structure of a DTL is first modeled by a circular waveguide filled with an anisotropic medium with
scalar permeability JL and tensor permittivity € = zzsz+rrst. The two structures are equivalent in four pertinent
characteristics from which the waveguide parameters and a radius a are determined. The exact geometry of the DTL
including the facing angles, the beam holes and the stems is used in the process via SUPERFISH computations.
A transmission line modeling the waveguide is then established, which is further improved to include the first
order effects of structure losses, beam loading and external rf sources. Comparisons with experimental results are
favorable.
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1 INTRODUCTION

The development of computer codes in recent years has enabled the accelerator designers
to obtain accurately a cell by cell design of a drift tube linac (DTL) including the effect
of the details of cell geometry and the parameters of the beam. The purpose of the present
paper is to provide an analytic background which integrates the information obtained in the
cell-by,..cell design to form a realistic and comprehensive I-D model, capable of predicting
the global and dynamic behavior of a DTL tank and its interactions with external rf sources.
The emphasis will be on the rf field profile in both amplitude and phase along the length
of the accelerator tank, as reacting to various forms of perturbations. It can also serve as
an additional tool, parallel to the cold model experiments, providing information of interest
for the final hot model design.

For practical range of energy levels of DTL's, the cell length is usually small compared
with wavelength. At 85 MeV protons, fJ ~ 0.4 and fJ ~ 0.2 for 25 MeV protons.
Thus one may surmise that the DTL tank may be considered as a circular waveguide
periodically loaded by drift tubes. The global behavior of the tank is then that of the loaded
waveguide terminated at the ends. The rippled field near the drift tubes can be considered
as the perturbations and its effects would be revealed through the dispersion relation of
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(a) A constant-J3 drift tube linac

(b) A graded-~ drift tube linac

FIGURE 1: The equipotential lines of the magnetic field for TMolO-like mode in a constant DTL and a graded-,8
DTL.

the loaded guide. The field line distribution of a DTL obtained from SUPERFISH1 code
supports this view (Figure 1). Further, one may see that the higher order Floquet modes
decay very rapidly away from the axis, approximately as exp(-nnr/ fJA). The main Floquet
mode, which takes the form as that of the TMol mode of circular waveguide, should
thus characterize the dispersion relation and the macroscopic behavior of the tank. This
approach of analyzing periodic rf structures has been used successfully for many years in
the microwave tube community.

An earlier attempt2 was made to represent a linac as a cascade of coaxial and circular
waveguide transmission lines. Interesting features, such as ramp generation and stabilization
by post couplers of a DTL tank could be observed, and were in general agreement with
experimental results. However, the drawback of this approach is that in the operating
energy level of most DTL's, the lengths of the sections are very small compared with
wavelength. The. number of modes required for each section is excessive, rendering the
approach impractical.

In this paper, we follow the approach used in the transmission line modeling of an
RFQ,3 and propose that the basic rf structure of a drift tube linac can be modeled by a
circular waveguide filled by a medium with a uniaxial, rather than isotropic,4 dielectric
e = zZcz + rrCt where Z and r are unit vectors, and with scalar permeability Jvt. The
two structures are equivalent in all principal characteristics relevant to the operations of
an accelerator. Exact relations between the two structures are presented later in Section 3.
The four parameters of the waveguide Jvt, Cz' Ct, and radius a, are determined numerically
via SUPERFISHCode calculations for a practically designed DTL geometry including
effects of drift tube stems, facing angles, beam holes, etc. This waveguide is then further
represented by a transmission line via standard techniques leading to a pair of transmission
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line equations. Energetic relations, the energy stored, ohmic wall losses (shunt impedance)
and beam loading effects are then incorporated into the transmission line model. Based on
this model, the effects of post couplers including those for a ramped gradient DTL can. also
be analyzed.5

Sections 2-4 represent the procedure in obtaining the transmission line parameters of the
basic rf structure. This is followed in Sections 5-6, by the energetic relations corresponding
to the actual operating conditions of the accelerator tank. Thus the model predicts accurately
the tank's performance in its dispersion relation, rf power flow, energy gain, power gain
and energy stored, and the effects on the rf drive sources. Thus it also gives accurately the
resonant frequency shift and the Qfactor of the tank due to the beam loading. These factors
are becoming more important as superconducting structures have become a reality. Section
7 presents the test of the basic model as compared with multicell SUPERFISH calculations
and cold model experiments with extremely satisfying accuracy. Section 8 provided an
analysis of the post couplers in the context of the model.

2 PROPAGATION CHARACTERISTICS IN WAVEGUIDE FILLED WITH
ANISOTROPIC DIELECTRIC

The electromagnetic field in an azimuthally symmetric transverse magnetic (TM)on mode
in a circular waveguide filled with a medium with scalar permeability f.L and uniaxial
permittivity e = zZcz + rrCt are expressed in terms of electric and magnetic mode
functions, e(r) and h (r ), which describe the transverse behavior of transverse fields6 . These
mode functions are related

h=z x e

where zis a unit vector in the axial direction, and normalized over the cross-section

f f lel2dS = 1

Cross
Sections

The mode function satisfies the transverse wave equation

V;e(r) + k~e(r) = 0

(1)

(2)

(3)

and appropriate boundary condition at the wall, r x e = O. The mode function e is given by

()

A J1(x r ja)
e r =r----

,J1iJ1 (X)
(4)

where r is a unit vector in the radial direction, a is the radius of the waveguide, and
X ~ 2.405 is the lowest root of Jo(X) = O. The cut-off wavenumber kc for this mode is
X j a. The transverse fields are then
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E t = V (z)e(r)

H t = / (z)h(r)

(5a)

(5b)

The voltage and current functions, V(z) and / (z), satisfy, as result of Maxwell's equations,
transmission line equations

dV(z)------a;- = (jwJL+k;fjwez)I(z)

d/(z)
--- = jW£t V(z)

dz

(6a)

(6b)

The 'per unit length' circuit representation of this transmission line is shown in Figure 2,
the series distributed impedance being (jw~ + k;fjw£z) and shunt admittance jW£t. The
propagation constant is then

y = J-W2etJL + k~etlez

and the characteristic impedance

(7a)

20 = (7b)

At cutoff, i.e. when w = kefJ~£z, y = 0, and, depending on boundary conditions at the
two ends, the field distribution is either a constant or a linear ramp. From Equations (6a)
and (6b), dV fdz = 0 leads to V = Cl, / = - jW£zClz + C2. Axial magnetic field is zero,
since this is a TM mode, and axial electric field is

E
z

= I 'Vt . e = I X1o(x r / a )

jw£z jW£zv'Jia2Jl (X)

Note that the axial electric field is proportional to transmission line current.

3 EQUIVALENT WAVEGUIDE

(8)

To model a DTL by an equivalent waveguide filled with a uniaxial dielectric, we must
find the four parameters characterizing such a waveguide, its radius a, the transverse and
axial permittivities £t and £z, and permeability ~. This can be done by imposing that
four characteristics of fields in a unit cell match the corresponding characteristics of the
waveguide. The goal is that with the parameters set in this manner, the cell by cell behavior
of the transmission line equivalent will accurately approximate that of the DTL over a range
of frequencies in the neighborhood of the operating frequency.
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(9)

The four characteristics used in this paper,

1. cutoff frequency

2. axial impedance in the TMolO mode

3. propagation constant in the next higher order axial mode TMoll

4. transverse impedance in the same mode as in 3,

did yield a successful model, as is shown below. Let us then go through the four conditions
listed above and see how we can extract the values a, Ct, Cz, and fJ- from them.

A typical unit cell is shown in Figure 3. Condition (1) sets the cut-off frequency of the
waveguide equal to the resonant frequency of the unit cell, We, i.e.

2.405
--- =We
a,JfJ-cz

Condition (2) stipulates that at W = We the ratio Ez(z, 0)/HfjJ(z, a) be equal to the
ratio of the corresponding quantities in the unit cell, when they are averaged over the
length of the unit cell. Since this field ratio in the equivalent waveguide at W = We, is
- j ,JfJ-£zJo(O)/Jl (2.405), we have

L If Ez(z, O)dz
fE 10(0) = 0 DTLcell

V8~ Jl (2.405) L If HfjJ(z, a)dz
o DTLeell

(10)

where the field values in the right hand side are obtained from SUPERFISH computation
for the unit cell.

For the remaining conditions we pick the next higher axial mode in a multicell structure
and run SUPERFISH for this mode. The propagation constant YOll of this mode is then
purely imaginary, YOll = j {JOll and the phase length of the cavity, Jr, can be equated to the
phase length of the equivalent transmission line, so that

YOll = j{30ll = J(WZ - wi) /Let = jrr jd (11)

where {JOll is the phase constant, WI the resonant frequency of the next higher order axial
mode, obtained from SUPERFISH, and d is the total length of the multicell structure.

For the last condition we extract from the SUPERFISH computation the maximum values
of the transverse electric field E r and magnetic field HfjJ at the tank wall; the ratio of the
two gives the transverse impedance, which is set equal to the corresponding quantity in the
equivalent waveguide

/f;n
W~ IEr(z, a) Imax

201 = - 1 - - = -:-------
£t wi IHfjJ(z, a) Imax

(12)
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(13)

Equations (9)-(12) yield the values of the four parameters needed. As we can see, ~ and Bt

can be obtained from equations (11) and (12), then ez from Equation (10) and finally, the
equivalent waveguide radius a from Equation (9).

As it is apparent, for whatever reason, intentional or not, these parameters can all be
functions of z, and the model as given by the equations (6a) and (6b) can deal with this
situation. It can predict the overall structure resonant frequency, the perturbation to the field
profile, and some other issues concerning the RF structure behavior.

4 EFFECT OF STEMS

Since stems are as closely spaced as drift tubes, their effect should be incorporated into
the waveguide model. As stems are located in a region of low transverse electric field,
their effect is small and manifests itself primarily in expelling the magnetic field from the
volume occupied by the stems. Hence, we will consider their effect to be a perturbation of
the magnetic permeability of the medium filling the equivalent waveguide. The perturbation
of the resonant frequency of a DTL by a stem is calculated in SUPERFISB: using Slater's
perturbation theorem

J (~IHI2 + BIEI2
) dr

!:i.we LlV

-;;;; ~ -J-(~-I-H-12-+-B-1E-I-2)-d-r
v

Translating this change in the cut-off frequency into a revised magnetic permeability ~'

I k~
~ = -'-2­

We Bz
(14)

where ke remains unchanged since it depends on waveguide dimensions only and w~ =
We + !:i.we . Transmission line equations remain as in (6), except that ~ is replaced by ~/.

5 STRUCTURE LOSSES AND BEAM LOADING

In preceding sections, we established for the RF structure of a DTL, a transmission line
model, corresponding to that of a circular waveguide filled with a uniaxial dielectric. In this
section and the next we shall improve the model to include first order effects. As implied
in the fact that the transmission line parameters may be functions of position, the model is
thus capable of dealing with various issues in the cavity field distribution due to geometric
perturbation of the tank. One of the issues, ramp generation, is shown in section 7 as a test
of this model against experiments. The next first order effect is due to structure losses and
beam loading and it is of the order of Q-1. The goal of this section is to incorporate these
effects into the transmission line model; thus the external rf drive sources must also be
included. The effect of the beam dynamics on the cavity field is implicitly included in the
data of the beam power, phase spread and synchronous phase, i.e. the determination of the
fundamental Fourier component of the beam current as it is incorporated into the model.
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j roJl dz

o ~--

j roE tdz

Of---------T------<O
FIGURE 2: The equivalent circuit for TM mode.

1
11I

Cell cylindrical wall

b

Drift tube

FIGURE 3: A unit cell of the DTL.
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A) Structure ohmic losses: The effect of RF power dissipated in the cavity walls and drift
tubes can be represented by a distributed resistance in the equivalent circuit Figure 2 in
series with the series inductance j w/Ldz or, alternately, as a shunt conductance G across
the capacitive reactance (k~Ij Wez) dz. In the latter case, it corresponds to the shunt
impedance of the cavity. These are shown in Figure 4a and 4b. In typical designs the
numerical values of Rand G are small compared with W/L and (wezl k~) respectively.
The dimension of R is ohms per meter while that for G is in mhos-meter, same as that
of (wezl k~). G-1 is thus a large quantity in ohms/meter, and is proportional to the
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FIGURE 4: The equivalent circuits of the DTL including beam loading and wall losses.
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shunt impedance of the structure. Recall that at resonance wJL = k~ Iwez' the values
of wJLIRand (wezl k~G) are equal to the Q factor of the cell, which is available in
the design codes such as the SUPERFISH.

B) Beam loading effects: The charge particle beam in a DTL, or any other RF accelerator,
is most accurately represented by a 3-D phase space description. The first order effect
is that the beam bunches, or micro pulses, traveling along the accelerator represent a
periodic current which may vary moderately along the length of the accelerator. The
fundamental Fourier component of this current interacts with the RF field and effects
the power transfer. It is to be noted that the beam bunches occur at the synchronous
phase of the RF field. Therefore the ac-ac interaction consists of both an inphase
component and a quadrature component. The former results in real power transfer
while the latter produces reactive power resulting in cavity detuning. In the following
we present a procedure for including the effect of the beam into the model. The
phasor current I b, representing the effects of beam loading, shall be represented as a
current generator connected in parallel with k~Ij wez and G as shown in Figure 4c7 .

It is understood that when the beam is present in the structure, the cavity is at the
operating condition, with each parameter near its design value. Information needed in
this procedure is: at each cell, the energy stored, the beam current, the beam power,
the synchronous phase and the averaged E field (Eo); all can be obtained from the
standard design codes.

The energy stored per cell U is used to normalize the model at the operating condition:
U = JLl/ol2 L/2, where L is the cell length. 1/01 = (2U / JLL)1/2 thus determining voltages
and currents, V(z) and I(z), at the design values. Since G « jwez/k~, and, ~s shall be
seen later, Ilbl « 1/01, the voltage dVo = 10(k~/jwez)dz is related to Ez as seen from
Equation 7, and Ez is proportional to 10(k~/jwez). The phasor current Ib represents the
effect of beam loading in that the power absorbed by the particle beam is set to equal to that
absorbed by lb. For convenience we use the phase of Eo as reference, then Eo = IEol and
10 = jl/ol. Let the complex beam power per unit length be defined as

Wb(Z) = ~ !! J . E*dS = Pb(Z) + j Qb(Z) W/m

cross
section

(15)

where J is the phasor of the fundamental Fourier component of the beam current density,
Pb is the beam power in a cell divided by the cell length and is available from the design
data and Qb is the so-called reactive power. Integrating,

Sincea

Ib = Ilblejl/Js = Ibi + j Ibq (¢s = synchronous phase)

(16)

(17)

a In this paper we use the phasor notation corresponding to ejwt time variation. Thus IIolej¢s represents a current

with peaks at l/Js before the peaks of the accelerating field.
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where lbi and lbq are respectively the inphase and quadrature components of lb. Hence
Qb = Pb tan cPs, and

(18)

We note that the per unit length voltage 10 (k~/j())ez) is proportional to < Ez > (the "Eo"),
G-1 is therefore proportional to shunt impedance (both in ohms per meter). It should be
emphasized that the above calculation is predicated on the assumption that the perturbation
due to ohmic losses is small. The same assumption will be made about beam loading, i.e.
the effective value of the Q factor is sufficiently high when beam loading is also taken into
consideration.

6 CAVITY EXCITATION

Having discussed the representation ofrf power consumed by structure and the beam in drift
tube linacs, we now come to the circuit models of generators which provide this power,S,g
Linacs are ordinarily excited through slots or loops.

In the case of a slot feed shown in Figure 5a, for the purpose of calculating the equivalent
network, we may close the aperture with a perfect conductor; the electric field E which
exists in the aperture is recreated by equivalent magnetic surface currents M = ±f x E,
equal and opposite, on both sides of the closed off aperture.6 Since the electric field in the
aperture must be axial, the equivalent magnetic current is azimuthal. Since the axial extent
of the aperture is small compared3 to wavelength, the magnetic current can be thought of
as concentrated in a single cross-section of the linac. A distribution of magnetic current
over the cross-section of the tank waveguide implies a discontinuity of electric field with
continuous magnetic field, and hence a series element in the transmission line representing
the dominant mode, as shown in Figure 5c. In addition, the excitation of higher order
modes by this magnetic current results in local energy storage represented in Figure 5c by a
reactance. On the feed waveguide side, similar considerations apply, yielding the picture of
transformer coupled transmission line terminating in a generator with internal impedance
Zg. Other networks, for impedance matching etc., may be inserted in the feed transmission
line.

Similar considerations apply in the case of a loop feed shown in Figure 5d. The current
of the coaxial line feed flows through the loop located in an axial plane. The current loop
is equivalent to an azimuthal magnetic dipole. Assuming, as is normally the case, that the
axial extent of the loop is small, we have again a discontinuity in the transverse electric
field or voltage with continuous magnetic field over the cross-section of the linac, resulting
in the same equivalent network as in Figure 5c.

Using the modeling approaches given here and in section 5, effects such as the detuning
by the beam and the cavity field phase variations along the length of the structure can be
calculated. The procedure is same as that demonstrated in the earlier RFQ modeling paper.3
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FIGURE 5: Cavity feed structure and equivalent circuit.
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TABLE 1: The geometry of a scale model for testing

Constant-fJ Model

Frequency 427 MHz

Number of cells 47

Tank diameter 42.276 em

Drift-tube diameter 8.954 em

Bore diameter 0.824 em

Average cell length 4.556 em

Average drift-tube length 3.654 em

Average gap length 0.911 em

Overall tank length 214.15 em

Face angle 3.00

Stem diameter 1.588 em

Post-coupler diameter 1.111 em

(19)

7 TESTING THE TRANSMISSION LINE MODEL

A number of tests of the model were run on the constant fJ structure used in the experimental
study ofBillen and McMurrylO the parameters of the structure are shown in Table 1. Some of
these tests are comparisons ofresults obtained from the waveguide model with SUPERFISH
calculations for the structure; others are comparisons with experimental results. Some
comparison is also made with the Grumman Continuous Wave Deuteron Demonstrator
(CWDD), Ramp Gradient DTL (RGDTL) cold test. I I

The dispersion curve of the waveguide model is compared with SUPERFISH results
in Figure 6. The effect of stems in this case has been omitted. One way to compare the
model with the actual structure is by comparing tilt sensitivity. This is obtained in the
actual structure by displacing one end of the cavity, changing the resonant frequency by
a perturbation of ~f (see Figure 7a and b) than displacing the opposite end of the cavity
until the original resonant frequency fo is restored. The effect of this is to create a linear
ramp. For small perturbations the ramp is proportional to the frequency perturbation. Ramp
sensitivity, S, is defined in terms of the voltages of first cell VI and last cell, VN,

VN - VI
S = x 200%

VN + VI

where the cell voltage is defined as the integral of Ez along the axis over the length of that
cell. In the transmission line model, lpoving the cavity wall can be simulated by terminating
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FIGURE 7: Modeling the procedures of the ramp creation by a transmission line.

the transmission line in a reactance (cf. Figure 7c) The procedure is very much the same.
The resonant frequency is changed by l:1f by replacing the short circuit by an appropriate
reactance at one end, and then brought back to the original value by replacing the short
circuit by a reactance at the opposite end. For a uniform structure, at resonance

jWJL - k~/jwcz = 0 (20)

so that in the transmission line model, V (z) the voltage is constant. With short circuit
terminations, Er(z) = 0 and hence V(z) = O. With reactive terminations jXl and j X 2,

V (z) =1= 0, but still constant. From the second transmission line equation (6b) it follows
that I (z) is a linear function for the transmission line model. Ramp sensitivity is defined in



TRANSMISSION LINE MODELING OF A DTLs 123

TABLE 2: Calculation results compare to experimental data (without stems)

Perturbation St Sz 1L Xl X2 Model Experiment

Frequency Ramp (%) Ramp(%)

200kHz 1.0001 0.9270 1.0119 -12.513 7.644 47.280 42.00

320kHz 0.9998 0.9270 1.0122 -23.275 10.654 72.816 67.20

475kHz 0.9994 0.9270 1.0125 -44.415 13.621 103.86 99.75

At cutoff 1.0006 0.9270 1.0114 0 0 0 0

very much the same way as for the linac itself, with first and last cell voltages replaced by
transmission line currents at the two terminations.

The ramp, as obtained by using SUPERFISH on the structure of Table 1, but omitting
stems, is shown in Figure 8. The somewhat uneven curve is due to marginal mesh size
imposed on us by the limitations of our computer (in addition we had to limit the length of
the linac to 20 cells). The corresponding curves for the transmission line model are shown
in Figure 9. The current is normalized to unity at the midpoint in all cases. The resulting
ramp for ilf = 475 kHz is 17.9% for the SUPERFISH results and 18.9% for the equivalent
transmission line. The results for the full 47 celliinac, using the transmission line model, and
comparison with the experimental results of Billen and McMurry? are shown in Table 2. We
see that there is a discrepancy of 6-9%. This is due largely to the fact that the transmission
line model neglected the effect of stems. The model was then improved by introducing their
effect (perturbing JL) to all cells except the end cells, as in the linac used by Billen and
McMurry. The comparison for this case is in Table 3, showing extremely close agreement.
It is seen that in Table 2, the parameters £z, £t, and JL vary slightly for different perturbation
frequencies. This variation is due to the slight change of the cell geometry resulting from
the end wall shifting.12

The transmission line model was also constructed for the RGDTL CWDD constructed
by Grumman Space System Division.8 Since this is a variable f3 structure, the effect of
stems differs from cell to cell, leading to a model using a non-uniform transmission line.

TABLE 3: Result comparison (with stems)

Perturbation Xl X2 Tilt Ramp(%) Experiment

Frequency Sensitivity (%) Ramp (%)

200kHz -11.805 7.742 218.94 43.788 42.00

320kHz -21.779 10.762 216.32 69.239 67.20

475kHz -40.966 13.725 210.67 100.067 99.75

at f~ 0 0 0 0 0
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TABLE 4: The geometry of a CWDD

CWDDDesign

Frequency 353 MHz

Number of cells 47

Tank diameter 51.280 em

Drift-tube diameter 10.850 em

Bore diameter 1.0 em

Average cell length 5.527 em

Average drift-tube length 4.421 em

Average gap length 1.105 em

Overall tank length 259.76 em

Face angle 1.4-6.0°

Stem diameter 1.905 em

Post-coupler diameter 1.270 em
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The parameters of the structure are summarized in Table 4 and the variation of the
permeability J-t of the equivalent waveguide is shown in Table 5. Using curve fitting, the
variation of J-t along the axis was approximated by

J-t(Z)//-LO = 0.997248 + 1.66294 x 10-5z - 2.5149 x 10-8z2 (21)

Numerically integrating the transmission line equations, properly taking into account the
absence of virtual stems in the end cells, we obtain a natural ramp of 21 % as compared to
the experimental value of 24%. With end faces displaced to change the resonant frequency
by 225 kHz and then bring it back to the original value, as in Billen's experiments, Siddiqi
et al. obtained the ramp shown in Figure 10. The results obtained by using the present
transmission line model are shown to compare also very well with the experiment.

TABLE 5: The variation of the permeability m of the equivalent waveguide for CWDD DTL

cell no.

position(em)

~f(MHz)

JL(z) (JLo)

1.97

1.3230

0.9973

10

39.80

1.2158

0.9979·

20

86.46

1.1042

0.9985

30

142.27

1.0010

0.9991

40

205.64

0.9088

0.9996
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FIGURE 10: Comparison of the calculation results with CWDD DTL experimental data.

8 POST COUPLERS

The effect ofpost couplers in the context of transmission line representation can be obtained
by modeling them as lumped element circuits.13

A. Post couplers in a constant gradient DTL

If the DTL structure is uniform and the accelerating field average over each cell is also
independent of location ( this corresponds to zero voltage, constant current on the equivalent
transmission line), stabilization can be achieved by using straight posts. As was indicated
above, since the post diameter is much smaller than one wavelength, the post can be
represented by a reactive shunt network. Over a narrow frequency range in the neighborhood
of the operating frequency, this network is a series L-C circuit as shown in Figure 11, The
resonant frequency of this circuit is determined primarily by the length of the post, while
the LIC ratio is set by the post diameter. The post impedance is given by

Z = jwL + _._1_ = j(L/C)1/2 (.!!!..- _ W
p

)
p ]wC wp w

where wp = 1/(LC)1/2 is the post resonant frequency. For an unperturbed tank, Er or the
transmission line voltage is zero and the shunt elements draw no net current. If the tank is
perturbed, say, by moving the end faces, the voltage is no longer zero and a ramp would
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FIGURE 11: The equivalent circuit of a straight post in the DTL
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FIGURE 12: Posts in a DTL stabilized the fields against the perturbations.
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result. The shunt elements then wouid draw current and the current (i.e. H4J) distribution
would have saw-tooth shape as shown in Figure 12. In order to stabilize the structure, i.e. to
insure that the average current (and therefore average accelerating field) remain unchanged
by the perturbation, the posts must be inductive at the operating frequency. Therefore the
post resonant frequency must be below the actual operating frequency. This was previously
shown by Shmoys et al. 14 and is in agreement with experiments by J. Ungrin15 and by
J.H. Billen.16 Typical dependence of the gap voltage ratio on the post resonant frequency is
shown in Figure 13. The effect of posts on the resonant frequencies of higher order modes
is shown in Figure 14 and Table 6.

B. Posts in a ramp gradient linac

Clearly, a ramp can be established by deliberately detuning the end cells, To stabilize this
ramp is more difficult than to stabilize a uniform field structure. It can be shown that the
straight posts cannot accomplish this. Stabilization can be achieved by the use of posts
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FIGURE 14: Resonant frequencies of higher order modes of linac of Table 1
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TABLE 6: Resonant frequencies of higher order modes of linac of Table 1

Mode Frequency (MHz) Frequency (MHz)

(without posts) (with 8 posts)

Post mode 422.193

Cut off 427.000 427.000

432.689 436.223

2 449.325 450.450

3 475.761 496.256

4 510.476 527.435

5 551.910 562.960

6 598.670 603.769

7 649.607

with tabs or bent posts (see, e.g., Billen17). The bent post cannot be represented by the
simple shunt network of Figure 11. It was found that the 2-port shown in Figure 15 can
well represent it. This 2-port is inserted at the location of the post between sections of
transmission line representing the linac structure between posts.

)
~l 1 ] 1 _

+

f----------'-----------L--O

FIGURE 15: The bent post in the DTL and its equivalent circuits

+
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FIGURE 16: The current distributions in a DTL with and without posts

Using the parameters of the linac previously referred to, shown in Table 1, a stabilizing
two-ports of the configuration of Figure 15 were synthesized. Different two-ports were
required for each of the 8 posts used. The reactances of the nth post are each approximated
by a linear function of frequency (over a narrow range) as:

(23)

where fa is the normal operating frequency and k = 1,2, p, LC (see Figure 15 and Table
8). We note that for an > 0, Xn obeys the Foster reactance theorem. The values obtained
for the various locations are shown in Table 7. The resulting linac resonant frequencies are
shown in Table 6; we see that the effect of post couplers is to increase the spacing between
resonances. The current distribution in the transmission line model of this linac is shown
in Figure 16. The effect of detuning by moving end faces of the linac is shown in Figure
17. Corresponding experimental results of Billen13 are shown in Figure 18. We see that the
transmission line circuit model shows good agreement with experiment.

9 CONCLUSION

We showed in this paper that a linac structure, including the effects of copper losses,
beam loading, stems and feeds, can be well represented by transmission lines. The results
obtained using the transmission line model compare very well with experimental results.
One advantage of the transmission line model is that one can predict the effect of changes
in the structure without resorting to calculating the field distribution in the entire linac using
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TABLE 7:' Equivalent circuit parameters for a post

n Cell a l a2 a P aLC Xl X2 xP X LC
n n n n nO nO nO n

3 .19E-06 .17E-06 .23E-05 .54E-04 -79.630 73.757 -1000.00 107.98

2 9 .25E-06 .22E-06 .23E-05 .54E-04 -105.652 95.557 -1000.00 107.98

3 15 .28E-06 .25E-06 .23E-05 .54E-04 -118.133 105.652 -1000.00 107.98

4 21 .31E-06 .28E-06 .23E-05 .54E-04 -133.958 118.133 -1000.00 107.98

5 27 .36E-06 .31E-06 .23E-05 .54E-04 -154.679 133.958 -1000.00 107.98

6 33 .43E-06 .36E-06 .23E-05 .54E-04 -182.982 154.679 -1000.00 107.98

7 39 .52E-06 .43E-06 .23E-05 .54E-04 -223.964 182.982 -1000.00 107.98

8 45 .68E-06 .52E-06 .23E-05 .54E-04 -288.600 223.964 -1000.00 107.98

Xl Xl xP X LC
n n n n

-150kHz +150kHz -150kHz +150kHz -150kHz +150kHz -150kHz +150kHz

-79.677 -79.584 73.714 73.800 -1000.586 -999.415 94.513 121.443

-105.714 -105.590 95.501 95.612 -1000.586 -999.415 94.513 121.443

-118.203 -118.064 105.591 105.714 -1000.586 -999.415 94.513 121.443

-134.037 -133.880 118.064 118.203 -1000.586 -999.415 94.513 121.443

-154.769 -154.588 133.880 134.037 -1000.586 -999.415 94.513 121.443

-183.090 -182.875 154.588 154.770 -1000.586 -999.415 94.513 121.443

-224.095 -223.833 182.875 183.090 -1000.586 -999.415 94.513 121.443

-288.769 -288.431 223.833 224.095 -1000.586 -999.415 94.513 121.443

numerical codes, which is often impossible, or at least impractical. Response due to beam
loading such as cavity detuning and field phase distribution etc. can also be calculated using
the model. These are important for accelerators of high beam loading factors. The analysis
on post couplers is shown to agree well with experiments. It provides the reason that an
asymmetric structure is needed for a ramped gradient DTL.
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