
Polytechnic
Institute

WEBER RESEARCH INSTITUTE POLY-MRI-1451-86
May 1986

FINAL TECHNICAL REPORT

ON

A MORPHOLOGICAL STUDY OF WAVES IN THE

THERMOSPHERE USING DE-Z OBSERVATIONS

Submitted by

Stanley H. Gross
Spencer P. Kuo

Jerry Shmoys

{NASA-Ct- 176775) A flGBPHCLCGICAt S1UDY OF
W A V E S I N I H E 1 H E R K C S P H E B E U S I K G DE-2
O B S E R V A T I O N S Final Technical Beport
(Polytechnic lest, of New Y c r k ,
Farmingdale.) 57 p HC A O U / r t F A01 CSCi QUA G3/46

N86-25070

Unclas
43355

Prepared for

National Aeronautics Space Administration

under

Grant NAG 5-479

https://ntrs.nasa.gov/search.jsp?R=19860015599 2020-03-20T15:31:30+00:00Z



ABSTRACT

Theoretical model and data analysis of DE-2 observations for determining

the correlation between the neutral wave activity and plasma irregularities have

been presented. The relationships between the observed structure of the

sources, precipitation and Joule heating, and the fluctuations in neutral and

plasma parameters are obtained by analyzing two measurements of neutral

atmospheric wave activity and plasma irregularities by DE-2 during perigee

passes at an altitude, on the order of 300-350 km over the polar cap. Though it

is still not clear whether one can conclude from these relationships that these

perturbations arise from the Joule heating and precipitation, a theoretical model

based on thermal nonlinearity (Joule heating) to give mode-mode coupling is

developed to explore the role of neutral disturbance (winds and gravity waves)

on the generation of plasma irregularities.
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I. Introduction

NASA awarded a research grant (Grant No. NASA - NAG5-479) bearing

the title "A Morphological Study of Waves in the Thermosphere Using DE-2

Observations", to the Polytechnic Institute of New York with Professor Stanley

H. Gross as the Principal Investigator for one year beginning September 1,

1984. Under the support of this research grant, a number of investigations

have been pursued. The investigation covered by the grant deals with data

analysis of DE-2 observations for determining the correlation between the neu-

tral wave activity and plasma irregularities. The aim of this study is to lead us

to Identify the source of perturbations, its structure and characteristics. More-

over, it is also our intention to develop theoretical models for understanding

the coupling between the neutral waves and the plasma irregularities and for

Interpreting wave properties obtained from measurements, so as to characterize

and interpret the observed disturbances.

At present, two measurements of neutral atmospheric wave activity and

plasma irregularities by DE-2 during perigee passes at an altitude on the order

of 300-350 Km over the polar cap are analyzed. They are for September 5,

1981 at 21:13 UT (day 81248) and October 15, 1981 at 0:51 UT (day 81288).

Magnetic activity on the flrst day was modest. The kP was 2 in the seventh

three hour period (18:00 to 21:00 UT) and 3+ for the next three hour period

(21:00 to 24:00 UT). The second case was at the start of a day that followed a

day of considerable activity, October 14, 1981, in which kP reached 8. The kP

index was 6_ from 21:00 to 24:00 UT on that day, but decreased to 3 from 0:00

to 3:00 UT on October 15, 1981, which interval covered the time of the second

case. The effect of the previous day's activity was therefore quite evident In

the measured data. The calculated Joule heating flux was found to be about

twice as great on the October 15 pass than it was on the September pass.
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Of Interest here is the relationship between the observed structure of the

sources, precipitation and Joule heating, and the fluctuations in the neutral and

plasma parameters. Comparisons are made between perturbations of tempera-

ture, densities, electric field turbulence, neutral winds, neutral densities,

between wavelike behavior in neutral densities and irregularities in ion density,

all as related to these source structures and as related to each other. Though

some relationships are found, it is not clear, as yet, whether these perturbations

arise from the Joule heating and precipitation. They may also be associated

with the structure of the convection cells at the time, and measurements are

needed to clarify this point. A preliminary theoretical model based on thermal

nonlinearity (Joule heating) is also developed to explore the role of neutral dis-

trubance (winds and gravity waves) on the generation of plasma irregularities.

In section II of this report, the background of the research area is dis-

cussed. Section III presents the results of Data Analysis on the two measure-

ments of DE-2 perigee passes. The theoretical study on the generation of

plasma irregularities by collisional coupling of the neutral's velocity perturba-

tions to the ionospheric plasma is given in Section IV.
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II. Background of the Research Area

1.0 Background

Wave-like perturbations of constituents in the thermosphere are detected

by measurements of the ionosphere by ground facilities and by instrumentation

on board satellites measuring both neutral and ionospheric parameters. Pertur-

bations of ionization are known as traveling ionospheric disturbances (TID's)

(Hines, 1974; Georges, 1968; Yen and Liu, 1974). A number of reports of

large scale TID's (from hundreds to thousands of km) have suggested that they

originate from high latitude regions during auroral substorms (Thome, 1968;

Davis and de Rosa, 1969; Testud et al., 1975). These waves are believed to be

caused by heat and momentum input into the atmosphere in the auroral zones

from particle precipitation and Joule heating (Vickrey et al., 1982; Wickwar, et

al., (1975). Their origins have been reviewed by Hunsucker (1982). Studies

have also been made of these waves in association with magnetic storms by

Richmond and Matsushita, (1975), Mayr and Volland, (1973) and Prolss,

(1982).

Medium scale TID's (from tens to hundreds of km) are also observed, but

their sources have not been well identified, though it is believed that meteoro-

logical phenomena may produce many of them. Larsen et al., (1982) have

associated thunderstorms with these waves. Mastrantonio et al., (1976) have

also associated these waves with Jet streams in the atmosphere, and Bertin et

al., (1978) have detected waves related to the jet stream. Auroral sources are

also believed to be the cause of many of these disturbances (Georges, 1968).

The characteristics of all these are found to be generally in accordance with

gravity wave theory (Hines, 1974) which has received some direct support from

satellite measurements on board Explorer 32 (Dyson et al., 19700 and Atmos-

pheric Explorer AE-C (Reber et al., 1975; Gross, 1980, 1984; Gross and



- 5 - '

Huang, 1084; Gross et ah, 1080, 108la and b, 1082, and 1084; Huang et ah,

1080; Hoegy et ah, 1070). It is believed that the neutrals are perturbed by

gravity waves as a result of localized sources of heating and momentum, and

the neutrals, In turn, drive the ionization through collisions and temperature

perturbations to produce these TID's. Gravity wave theory is concerned with

two types of waves called gravity waves and acoustic-gravity waves. Acoustic-

gravity waves make up the upper frequency branch and gravity waves the lower

frequency branch of the hydrodynamical system in which both gravity (buoy-

ancy) and compressibility act as restoring forces. The upper branch becomes

identical to ordinary sound waves in the audio frequency range, but at its

lowest frequencies, such waves are called "infrasonic waves." This branch has a

lower cutoff frequency called the "acoustic cutoff frequency," and there is a

cutoff region below this frequency which separates the two branches. The

lower end of the cutoff band, which is the upper limit of the gravity wave

branch, is called the "buoyancy frequency." The cutoff band is determined by

the temperature and its vertical gradient and by the mean molecular mass of

the medium, so that it varies somewhat with altitude. The cutoff band is rela-

tively narrow, and periods within it range from about several minutes at low

altitudes to from 10 to 15 minutes at higher altitudes, depending on tempera-

ture. The periods of gravity waves then range from the period of the buoyancy

frequency to many hours, whereas those of acoustic-gravity waves range from

the acoustic cutoff period to periods of seconds and less. In the gravity wave

branch, long period waves usually have large horizontal wavelengths and

shorter periods smaller wavelengths (Hunsucker, 1082; Morgan and Tedd,

1983).

Though fluctuations in ionization in the thermosphere have been measured

both on the ground and by satellite borne instrumentation, the detection of
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wave-like perturbations of neutral constituents in the thermosphere depends

mostly on access by rockets and satellites. Radar is used only up to an altitude

of about 100 km for neutrals. Satellite borne experiments have detected wave-

like perturbations, both in total neutral density and temperature; for example,

ESRO 4 (Prolss and Von Zahn, 1974a and b; Trinks and Mayr, 1976) OGO 6

(Reber and Hedin, 1974; Taeusch et al., 1971), AEROS-A (Chandra and

Spencer, 1975 and 1976; Trinks et al., 1976), AE-C (Reber et al., 1975; Potter

et al., 1976; and the various papers authored or co-authored by Gross in the

references) and DE-2 (Hoegy et al., 1981). The density variation of individual

species, namely, nitrogen, oxygen, helium and argon, have also been measured

on board ESRO 4 , AEROS-A, AE-C, AE-E, and DE-2. Vertical velocity vari-

ations of these species have also been measured by AE-C, AE-E, and velocity

variations by DE-2.

2.0 Source Problem and Energy Distribution

2.1 High Altitude Sources

Worldwide temperature increases in the thermosphere during magnetic dis-

turbances have been observed by many researchers (Jacchia et al., 1967; Roe-

mer, 1971; Reber and Hedin, 1974; Chandra and Spencer, 1976; and others).

These disturbances are believed to be the source for many gravity waves

observed in the thermosphere at mid and low-latitudes. The basis for this

belief stems from observations of TID's by ionosounders (for example, Klos-

termeyer, 1969), by incoherent backscatter systems (Testud, 1970; Thome,

1968; Testud et al., 1975) and by Doppler sounders (Georges, 1968) that detect

these distrubances moving toward the equator with speeds ranging from 200-

700 m/sec. The relationships between thermospheric neutral particle effects

and magnetic activity is inferred as well from the correlations of measured data
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with storm events (Trinks et al., 1075 and 1976; Chandra and Spencer, 1975

and 1970). Waves have also been observed In association with auroral sub-

storms In the evening section (Davis, 1971), though it has been suggested that

some observed in the daytime may rise from the precipitation of soft particles

about the cusp region (Trinks et al., 1975). .

Two mechanisms in the auroral zone are considered to be the sources for

the waves. These are Joule heating due to electrojet current dissipation in the

ionosphere and momentum disturbances arising from the Lorentz force (Chi-

monas and Hines, 1970; Cole, 1971; Testud, 1970; Richmond and Matsushita,

1975; Roble et al., 1978; Richmond, 1979; Prolss, 1982) moving at supersonic

speeds (Chimonas and Peltier, 1970) and heating due to particle precipitation

(Hays et al., 1973). Nevertheless, it is generally accepted that the important

mechanisms at work are mainly Joule heating and the Lorentz force in the E

region (see Hunsucker, 1982). Gross et al., (1984), however, suggest that

heating by particle precipitation in the F-region may also be at work producing

waves observed by AE-C and AE-E. The structure of diffuse aurora caused by

lower energy particles (Lui et al., 1982) reinforces this idea. Furthermore,

Hunsucker, (1983) finds that there is no apparent correlation between TID's

and magnetograms, except for large magnetic storms, suggesting that E region

sources may not be at work when magnetic activity is below some threshold;

New evidence of Morgan, (1983) may open such matters for further considera-

tion. Anderson et al., (1982) propose that wind shears in the equatorial zone

of the F region could also generate gravity waves in the thermosphere.

The energy input to the thermosphere from high latitudinal regions is

believed to be significant relative to solar EUV input to the thermosphere

(Ching and Chiu, 1973). The high latitude input is therefore of great impor-

tance to the physics of this layer, and the manner in which the energy is glo-
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bally distributed to lower latitudes must be understood. Two major transport

processes are favored; one is based' on the thermospherlc winds, the other on

waves. It is very likely that both play a role (Klostermeyer, 1973; Chandra and

Spencer, 1976; Mayr and Volland, .1972 and 1973). Waves distribute their

energy through dissipation by viscosity, thermal conductivity, ion drag, wave-

wave coupling and wind interactions. The extent of transport of energy and

momentum by waves is of interest here. Richmond and Roble, (1979) esti-

mate 2-4 x 1015 J can generate gravity waves capable of producing observed

ionospheric disturbances at Millstone Hill and Arecibo incoherent scatter radar

facilities.

2.2 Low Altitude Sources

Evidence that gravity waves in the thermosphere also originate in the

lower atmosphere has been reported by Baker and Davies, (1969), Davies and

Jones, (1971), Chimonas and Peltier, (1974) and Prasad et a!., (1975). These

investigators have found connection between the thermospheric disturbances

and severe thunderstorm activity at mid-altitudes. Others have also found

correlations with ground level microbarograms (Bowman and Shrestha, 1966;

Khan, 1970; Herron and Montes, 1970; Shrestha, 1971a and b). These latter

meteorologically-connected events appear to have shorter periods than the large

scale events, from about 3 minutes to the order of 1 minute. Waves of such

periods are so-called acoustic-gravity waves of the upper frequency branch of

the mode. Coupling to the stratosphere has also been noted (Mason, 1968 and

1976; Fraser and Thorpe, 1976a and b). There have been observations of grav-

ity waves in the thermosphere directly related to Jet stream activity (Gertin et

al., 1978), confirming a suggestion by Mastrantonio et al., (1976). Though evi-

dence of correlation of Jet stream activity and pressure fluctuations at the

ground is plentiful, correlation with ionization variation would be an important
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flndlng, because of Implication as to the transport and distribution of energy

and momentum.

It may be expected that meteorological sources are relatively common,

though the effects of an individual event may be localized (Davies and Jones,

1971), in contrast with what is believed to be the global-like nature of distur-

bances generated in the auroral region. However, the common presence of

waves of scale sizes ranging from about 80 km to several hundred kilometers

observed in satellite data (Gross et al., 1080 and 1981b, 1982; Gross and

Huang, 1984) suggest that considerable meteorologically generated disturbances

reach the thermosphere. In this regard, it is important to know what part of

the disturbances are associated with auroral activity. Meterological events (not

all of which appear to produce waves in the thermosphere) may cause the tran-

sport of energy into the thermosphere in amounts not inappreciable relative to

the solar EUV (Hines, 1965; Testud, 1970; Lindzen and Blake, 1970) If this

much energy can reach the thermosphere, after possible partial reflection at

some level and/or possible evanescence in some altitude region, such

phenomena may also be indicative of the deposition of much more energy

below the thermosphere. The chemistry and dynamics of the lower thermo-

sphere, mesophere, and stratosphere can be significantly modified in such

events. The interplay of tropospheric phenomena and these upper regions is of

importance. One aspect may bear on the generation of turbulence and mixing

up to'the turbopause.. Wave effects on the turbopause may also be important

because of the effect of the altitude of the turbopause on the specie distribution

above it (Chandra and Herman, 1969; Chandra and Spencer, 1976).
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III Measured Data and Analyses

The orbital paths over the polar region are shown In Figure 1 for the two

passes. These are plots of invariant latitude against magnetic local time. The

path for the second clay for orbit 1071 on day 81288 passes closer to the mag-

netic pole than that of the first day 81248, orbit 492.

Figure 2 is a plot vs time in hours and minutes UT, as well as other
\

ephemeris information, of the variation of various parameters measured by the

LAPI, VEFI, LANG and WATS instruments for orbit number 402' on day

81248. The top panel contains particle precipitation information in the form of

the energy flux for electrons with energies as given by the logarithmic scale on

the left. The flux is not readily obtained from the graph, since the original data

utilized a color scale: however, the darker the appearance, the higher the flux.

The highest possible flux of the scale is 1 erg/cm2- sec- sr- ev. The second

panel is the turbulence in the electric field plotted on a logarithmic scale for the

frequency band 8-16 HZ, shown as dots, and the 4-16 kHz band, shown as O's.

The rise in the turbulence is quite evident at about 21:13 UT, at which time

spikes in the precipitation flux of 3-4 kev electrons are quite evident in the

LAPI data. These spikes are probably upward currents, and the region is

believed to be the cusp. The third panel is a plot of electron temperature. The

discontinuity and perturbation at 21:13 UT confirms the cusp location. The ion

density is shown in the fourth panel, and a drop in density as well as irregulari-

ties are observed to occur at about the same time. The fifth and bottom panel

contains both the horizontal and vertical neutral winds, coded H and V, respec-

tively. Note the rise in the horizontal wind at about 21:13 UT. Also note the

wavelike variations in both wind components. The horizontal wind here is

across the orbital pass and Is mostly east^west.. The step in the horizontal wind

Is not a true discontinuity. It is the result of the change in direction, as
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designated, on passing over the geographic pole (note the geographic latitude

89.98°).

Figure 3 is the same as Figure 2, but for orbit 1071 on day 81288. The

extended region of precipitaiton is quite evident and contrasts with that in Fig-

ure 2. Note the spikey nature of the precipitation at about about 00;50 UT

which is also associated with the rise in the electric field turbulence, the change

in electron temperature and ion density there, as well as the rise in the horizon-

tal wind. It is believed that this is the cusp region. There is also considerable

turbulence before this time which undoubtedly relates to the borad extent of

the precipitation. The winds, electron temperature and ion density also exhibit

considerable variation throughout, and the winds appear quite wavelike in their

variation.

Figure 4 contains plots of the variations in the magnetic field components

and one electric field component, the x component which is along the space-

craft velocity vector, vs time in hours and minutes UT for the two days, 81248

on the left and 81288 on the right. Also on each of the graphs is a plot of the

integrated downward Joule heating flux, designated SY in the figure. Note that

the center of the flux is at 21:13 UT on day 81248 which is the time when the

orbital path cuts through the cusp, and at 0:50 UT on day 81288, also the time

of travel through that region. The peak Joule heating flux is about 50 mW/m2

on day 81248, whereas it is about double, 100 mW/m2 on 81288. The duration

of the Joule heating pulse in orbit at the 10% level, 5mW/m2, is about 53

seconds, about 400 km in distance along the orbital track for day 81248. The

Joule heating pulse for day 81288 is actually like a double pulse. Its overall

duration at the 10% level, 12 mW/m2 is about 120 seconds, or a distance of

about 900 km along the orbital track.

Figure 5 is a plot of the densities of oxygen, nitrogen, ions and electron
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temperature vs time in seconds UT and other parameters. Samples are roughly

1 second apart. [The upper graph is fo day 81248, whereas the lower is for day

81288. These plots show the electron temperature and ion density variations in

greater detail than those in Figures 2 and 3. For 81288 on the bottom, note

the dip in the oxygen density, the rise in the nitrogen density, the increase In

electron temperatures and decrease in ion density, all at about the same time,

the time interval during Joule heating, about 0:50 UT. Note also the more gra-

dual fluctuation of the neutral gas densities as contrasted with the irregularity of

the ion density and electron temperature, the neutral density changes are not

very evident for the Joule heating region 21:13 UT for 81248, though there is

some small decrease in oxygen and increase in nitrogen densities. The more

gradual fluctuation of the neutral densities in contrast with irregularities in the

ion density and electron temperature is also quite apparent.

Figure 6 is a plot vs time in seconds UT of the fluctuations in the densities

of the ions, oxygen and nitrogen for day 81248. The fluctuations are obtained

from the densities shown in Figure 5 by passing the logarithm of the densities

through a digital bandpass filter with a lower cutoff frequency of 0.005 Hz,

which corresponds to about 1500 km scale size along the orbital track; and an

upper cutoff frequency of 0.833 Hz, which corresponds to about 90 km. Thus,

the filter passes components of scale size between these limits. The upper

cutoff Is used to filter out noise in the data. Some of the features overlap.

Thus, the negative excursion of the oxygen and electron density fluctuations

and the rise in the nitrogen density fluctuation at a point past the 76350 second

tick marker is associated with the peak in the Joule heating. Other both smaller

and larger scale features match, though there are still some differences.
( . • .

Regions seem to correlate or anti-correlate in part. The fluctuations are the

relative fluctuations with respect to the background. Relative ion density
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fluctuations as large as 43% are obtained, though the mean level Is closer to

20% The oxygen-relative fluctuations are on the order of 3% whereas that of

nitrogen is closer to 3.5%

Figure 7 shows the FFT power spectra of the fluctuations in Figure 6 plot-

ted against wave period rather than frequency. The only spectral feature that

appears common in the three spectra for this day, 81248, is one with a period

of about 100 seconds which corresponds to a spatial structure of about 750 km.

This size is roughly twice the scale size of the 10% level of the Joule heating

pulse in Figure 4 for .day 81248. This relationship could still be accidental.

Fig-ure 8 is the same as Figure 6, but for day 81288. The same filter has

been used. The feature associated with Joule heating may be seen Just beyond

the 2977 seconds tick mark. Other features appear to correlate to some extent,

though there is still considerable differences.

Figure 9 shows the power spectra plotted vs period for the fluctuations of

Figure 8, which is for day 81288. Spectral features appear to correlate some-

what at about 110 to about 128 seconds, 825 to 900 km on the orbital track.

This scale size corresponds to the width at the 10% level of the Joule heating

pulse. /In the following, we present an/ The connection may again be acciden-

tal. The large peaks in the oxygen and nitrogen spectra at about a period of

500 seconds is spurious and due to the finite size of the data samples.
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IV Theoretical Analysis and Modeling Studies

Modeling studies are necessary to guide the interpretation of measured

data. Since the coupling of neutrals and ionization is of interest, it is necessary

to take into account more than one fluid. Such studies have been made for the

sourceless linear case (for example, Dudis and Reber, 1970; Gross and Eun,

1976 and 1978; Del Genio et al., 1979). Since sources and their characteristics

are of interest as well, source driven models must be treated. Such studies,

however, were only made for atmospheres of Just one species (for example,

Chimonas and Hines, 1970; Richmond and Matsushita, 1975). At the

Polytechnic we have been studying the problem of multiple constituents or

fluids with sources, particularly for two species (Eun and Gross, 1976a and b;

Gross and Eun, 1976, 1978). No extensive analytical treatment has as yet been

made for more than two species, though with the assumption of truly minor

species, one may treat the atmosphere as a two-fluid problem with one fluid for

the major species and the other any of the minor species. Mayr and Volland,

(1976) and Mayr et al., (1982 and 1983) have modeled the problem on a com-

puter for propagation in a spherical geometry for a number of neutral consti-

tuents with losses. No ful l treatment of ionospheric plasma in a magnetic field

coupled to neutral species with sources has as yet been made.

In the following, we present an analysis to show that plasma irregularities

can be generated by collisional coupling of the velocity perturbations of the

neutral waves in the neutrals to the ionosphere plasma. The thermal nonlinear-

ity gives the mechanism for mode-mode coupling and provides a channel for

transfer of the space-time oscillating perturbations into disturbances having only

spatial oscillations (irregularities). In order to simplify the analysis, geometry

corresponding to equatorial latitude is chosen. The application of the analysis is

then focused on explaining the spread F (ESF) phenomenon.
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1.0 Coupling of Netural and Ionospheric Distrubances

The rising and the subsequent descending of the ionosphere after sunset

have been noted as the striking symptom of the onset of ESF (see, e.g., Her-

man, 1966; Rastogi and Woodman, 1978). These upward and downward

motions of the ionosphere are controlled by the E region dynamo. During the

reversal of neutral winds, a wind shear may form and become the source of

neutral waves (Hines, 1967, 1971). The formation of a wind shear in the F

region was invoked by Anderson et al. (1982) as the hypothesized source of

in-situ neutral waves for the local seeding of ESF. No wind shear in the F

region was seen in the ALTAIR data, however, at time of wave structure for-

mations. The wind shear required for the generation of in-situ neutral waves in

the F region was estimated to be, at least, 18 m/sec/Km based on the criterion

that R|< 0.25, where Rj is the Richardson number. While this required wind

shear seems to be large in the F region, much greater wind shear can exist in

the E region.

Intense neutral waves produced, for instance, by the solar terminator

(Beer, 1973b) or a wind shear in the E region are suggested in the present

paper as the potential local coherent sources of exciting large-scale

(> tens of kilometers) ionospheric density irregularities and forced ion acoustic

modes. Ionospheric density irregularities are driven by the thermal pressure

force that stems from the collisional dissipation of both the neutral wave and

the excited ion acoustic modes via plasma-neutral collisions. This process, as

shown below, relies on large plasma-neutral collisions. It thus represents an

efficient coupling between the neutral and the ionospheric disturbances in the E
•f

region rather than in the F region. However, the electric field perturbations

associated with the large-scale field-aligned E region irregularities can map along

the geomagnetic field lines up to the F region (Farley, 1960) and, consequently,
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provide the Initial plasma density perturbations for the subsequent excitation of

Rayleigh-Taylor instability. • .

1.1 Neutral wave as a pump

Neutral waves, whose intensity is evaluated in terms of the neutral velocity

perturbation (VJ in the following analysis, can transfer their momentum and

energy to the charged particles through collisions. A plasma instability can be

excited at the expense of the neutral wave. Whether the induced ionospheric

disturbances can significantly affect the F region dynamics depends upon the

characteristics of the instability such as the thresholds and the growth rates.

The proposed neutral-ionosphere coupling process is analyzed by fluid equa-

tions, because the scale lengths of plasma modes are greater than the ion

gyroradii by several orders of magnitude. The nighttime E region is approxi-

mated as a homogeneous plasma imposed by a uniform magnetic field.

The two plasma modes under consideration are field-aligned low frequency

mode and a forced ion acoustic mode that are parametrically excited by the

neutral wave. This three-wave interaction process can be conveniently

described by the following wave frequency (w) and wave vector (k) marching

relations: . • '.

Re(O = Rc(ws) + Re(wa)

k = k + k
~o ~s ~»

where Re(o;) means the real part of u the subscripts o, s, and a denote the

neutral wave, the low frequency mode, and the ion acoustic mode, respectively.

It will be shown that Re(u;s)«Re(u;a) and the low frequency mode is nearly a

zero frequency (or purely growing) mode. The forced ion acoustic mode Is so

termed because its frequency is determined by that of the neutral wave. There-
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fore, this frequency may far deviate from the characteristic frequency

(~a few kHz) of the ion acoustic waves in the ionosphere.

The perturbations in plasma density (n), velocity (V), and electric field (E)

caused by the low frequency mode (or ion acoustic mode) are represented by

Ns(^a)»Y.(^Y») > and ES(6EJ , respectively. The plasma-neutral collision fre-

quency has the expression of i/pn = ^pno(l + £Nn/Nno) with the neutral density

perturbation (<$Nn) taken into account, where p = e (electrons) or i (ions), Nno

is the unperturbed neutral density, and fpno is the collision frequency in the

absence of <5Nn.

1.2 Large-scale Field-aligned Ionospheric Irregularities

The coupled mode equation for the low frequency mode (i.e., the large-

scale field-aligned ionospheric irregularities) can be derived from the following

linearized electron and ion equations.

They are: . .

(I) Momentum equations

MeN0J^-Yse'= - V(TeoNs + N0$Te) + N0e(E + -^-V^ X2 B0) -

\x TV ,; \r _ MPN0-
se ° o

(!)

i) + N0e(E +-i-Ysl XzB0) -

<$Nn

(2)

where Me(Mj), e, Teo(Tio) , N0, and B^ (=2B0) are the electron (ion) mass, the

electric charge, the unperturbed electron (ion) temperature, the unperturbed

plasma density, and the earth's magnetic field taken to be the z axis of a
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rectangular coordinate system; the last two terms on the RHS of (1) and (2)

come from the coupling of the gravity wave (6Nn and V,) and the Ion acoustic

mode (^V^); the electron and the ion temperature perturbations (STe and 6Tj)

result from the thermal effect described by the heat source term In the energy

equation;

(II) Energy equations

o ft
—N —— <5T + N T ^7 • V° e ^ 1No -"-eo V XM

V* • V)

(3)

N0TiO V ' Y8I

. . Mj
=V '(RflV||+RiVx)<5Tr

 3No^lno (^Tr 6TJ- N0«/lnoM,(8y* • V )

(4)

where Mn and 8Tn are the neutral mass and the neutral temperature perturba-

tion, respectively; the first term on the RHS of (3) and (4) represents the

parallel and the cross-field heat conduction rates, the second term is the cooling

rate due to plasma- neutral collisions, and the last one is the heat source term

contributed form the collisional dissipation of both the gravity wave and the ion

acoustic mode;

(III) Continuity equations

•7T-N. + V • N0V = 0 = 4r Ns +V ' N0V, (5)d\j . s ° ~se Qt s ' v o ̂ g| v /

where the quasi-neutrality condition, viz., Nsec^Nsi = Ns, has been used;

further, it is reasonable to assume that
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(IV)

<5TjC*<5Tn (0)

if the ion mass is not very different from the neutral mass. Therefore, the

cooling term in the ion energy equation disappears with this assumption.

We also assume that the perturbations associated with the. low frequency

mode have a space-time dependence of the exp[i(ksx-u;st)] form, where

us = wr + i"y and o>r(7) is the real frequency (growth rate) of the low frequency

mode. This mode has afield-aligned nature, viz., its wave vector is orthogonal

to the earth's magnetic field (Bo = 2B0) and is chosen to be the x axis of the

coordinate system. Replacing v( = xd/dx) and d/dt in (l)-(6) by ik(= ixks)

and - iw- and eliminating 6T.,5T-. , V , V . a n d E from these equations, we
« c * s^SC f^'S\ "-*S

obtain the following coupled mode equation for the field-aligned ionospheric

irregularities

— ,eno] + n t—^-

I 2 s f e ° 1 i ° 1 2 e l 1
3M/ ^e ^ Mn ^e ^i

2 „ F ivie u v ae Me ^eno V-mo
- 9 ' ' •• • '~ • i\ 6V* ' V^ _ M^sti I ^wtM —n

n

Me • nj i r n,
T7" V"x - TTTT—Vny + nino Vnx + Vny

' v ' "^ ^ino

where f2 e(O )s) is the electron (ion) gyrofrequency;

Z7e = i/ + 2(Ma /Mn)i/e n o-+ k-s
2V^/(Qe

2 +^e
2)]z/e and 7i = 7
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where Vte(Vti) and uc(u^ are the electron (ion) thermal velocity and the

effective electron (ion) collision frequency, respectively. The three terms,

2(Me/Mr>cno - »tfv*/(n 2 + v?}, and i/,k,2i/-j/(n ? + v?)

are the electron cooling rate due to electron-neutral collisions, the electron

cross-field heat conduction loss rate, and the ion cross-field heat conduction

loss rate, respectively. The RHS of (7) represents the nonlinearity of causing

ionospheric irregularities, viz., the collisional dissipation of the gravity pump

wave and the forced ion acoustic mode.

1.3 Forced Ion Acoustic Mode

The forced ion acoustic mode is the "high frequency" sideband excited

parametrically by the gravity pump wave. Since its frequency is determined by

the beat frequency of. the gravity wave and the low frequency mode, it is not

necessarily the characteristic frequency of the acoustic waves. The electron and

ion equations that are required for the derivation of the coupled mode equation

for the forced ion acoustic mode include the continuity equations and the

momentum equations.

For simplicity, the forced ion acoustic mode is assumed to propagate along

the earth's magnetic fleld; viz., J.^ = zlca. This assumption is quite reasonable in

the E region where ^jno»n -t indicating that the ion dynamics can be treated

approximately as in the. unmagnetized case. With the exp[i(kaz - o;t)] type of

perturbations, the linearized electron and ion equations can be written as:

(I) Continuity equations

- wa<5Na +• lN0ka6vMZ = 0 =- iwa<5Na + iN0ka5Vaiz (8)

namely,
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= <5Vaiz = «5Vaz,

(II) Momentum equations

MeN0 ( - Iw + i/eno) 5 ae

= iZkaTeo<5Na - N0e(Z6Ea + — 6VM x ZB0)

6Nr
V* 4-M N*i> V~se ^ lvle1Ns"eiio.J:n

(9)

iZaTio <5Na + N0e(Z5Ea + - 6Vai x ZB0) -
v*

<5N '

N
V* 4-T

no

(10)

where u>= wa 4- i^y . The quasi-neutrality approximation, 6Nj~ 6Ne = 6Na ,

has been used in (8) - (10).

Eliminating Vsez , Vsiz , and 6Ea from the z components of (1), (2), (9)

and (10) leads to

i,2 A/f ,, 2 •

5Nr

no •)V M,

Vino M. ino

^ino

<5N
V*vnz Nno

(ID

with the aid of (8), where Cs is the ion acoustic velocity. Under the assump-

tion that Re(o;a)J^.7 and 7 «fjno<^eno and since

then (11) reduces to
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Vnz 1 -

Solving (9) and (10) for

the following results:

, 6V

u"

aex

N *1 s .

N

(12)

and 5Vajy, respectively, we get

eno 1ST̂ ,r

and

N

i/

N
(15)

~ a -
iN

- ft -^
1N

(16)

where a = i and /? = O i/^ino for n i« i/jno in the E region; a = (vmo/ft j)2

and P = fino/n j for n j»i/ino in the F region. Since (^eno/n
 e)~

10~2 C10"6)

and (n i/*/jno)~ 1CT1 (10+2) in the E(F) region, Equations (12)-(16) yield a

simple coupled mode equation for the forced ion acoustic mode, viz.,

N*
Yn

for Q j « i/ino in the E region, or,

- - v » 6 ae (i7b)

for fJ j» ^ino in the F region. It has seen that if the neutral wind blows dom-

inantly along the earth's magnetic field (i.e., V c^ ZVnz), 8VAi in the F region is



" 2 3 ~ , K greaterthe latter is \*1

,ma

Pt r0 ta i
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2.0 Excitation of the instability

Under the assumptions that veno > vino » 7 and

separated into the following two equations

V
ur c± i , i/i-Pa l/ks , ,

» ujj., can be

(18)
a a

and

+

n eo i
eno

2 -2
—

2 ^s2 fTeo

3 Mj 1 7e

TT T

Mn Te Tfi

ls

^o

"

Me z/enoe eno
eno •V (19)

According to (18) and assuming that Re(o;a)>'7, o;r(=Re(o;s)) is less than

R - C ^ ) by at least four orders of magnitude since

Therefore, this result shows that the low frequency field-aligned mode can be

considered to be a zero-frequency mode and that the frequency (Re(^a)) of the

forced ion acoustic mode is determined by that (w0) of the neutral wave, i.e.,

Based on (I7a,b) and the assumption that ^jno/7i and veao/7e»l, it

becomes clear in (19) that the neutral-electron interaction ( f^^eno^^ae '^) nas

a negligibly small effect on the excitation of the instability as compared with the

neutral-ion interaction ( ^^jno^^*^,)- Hence, the RHS of (19) can be approxi-

mated as

mo

Mn ^
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showing that the proposed mechanism depends on the effective Ion-neutral

coupling. Substituting (I7a) Into (19) leads to the dispersion relation of the

Instability, which Is a cubic equation of f (the growth rate), viz.,

A*y3 4- B72 + D = 0 (20)
where

A = 1 +

B = 2(Me/M>eno

^/n e
2)

en ,) [vn |
2

and

D = - en
2) |v

•

Although (20) is the dispersion relation derived for the E region case, it can be

also applied to the F region when V ~2Vnz, namely, when the neutral wind

blows primarily along the earth's magnetic field lines.

2.1 The threshold condition -

The threshold condition of the instability that Is obtained by setting 7=0

In the dispersion relation is given by

\\r 12 _lv thl =
M. k/V2

(21)
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where the two terms, 2Mc/Mn and ks
2v£/n 2, correspond to the electron cool-

ing due to electron-neutral collisions and the electron cross-field diffusion,

respectively. The dormer effect dominates over the latter when the scale

lengths (Xs = 2 7 r k ~ 1 ) of field-aligned ionospheric irregularities exceed

^/n e) (Mn/2Me)
1/2~ 8 meters in the ionospheric E region.

Since X s ( = 2 7 r k ~ 1 ) is of the order of the gravity wavelength

tens of kilometers), (21) can be approximately written as

3 2;rVt
2

(•£•)("—r~)" (E region) .

(F region, when
N2 V~ZV,,J.

This expression shows that the threshold condition of the proposed instability is

primarily determined by the ion cross-field diffusion damping, whose exact

form has been retained. In the ionospheric E region, the ion effective collision

frequency (t/j) is dominantly contributed from the ion-neutral collisions (^jn0)

that are much greater than the ion gyro-frequency (fi j), that is, i>j~i>ino»n j.

This means that ions are essentially unmagnetized and their cross-field diffusion

damping is thus identical to their parallel diffusion damping. If we use the fol-

lowing E region parameters (Rishbeth and Garriott, 1069):

M(NO+)/Me = 5.5 x 104,n j/27T = 25.4 Hz, ^ ino(^eno)

= 5.8xl03(9.2xl04) Hz, Vti = 2.54xl02m/sec

(or ^=210° K) and Xs = lOOKni, then |Vth |~ 8.5 x 10~4m/sec. By contrast,

[VuJ is independent of ^ino in the F region because n j»f jno In the case that

\k~zVnz. This indicates that ions are strongly magnetized and their parallel

diffusion damping may greatly exceed their cross-field diffusion damping if the

irregularities have a non-zero parallel wave number. With the substitution of
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the typical F region parameters:

M(O+)/Me = 2.0x10'', n j/27T =' 4.70Hz,Vu = 7.6xl02 m/sec^ = 1000°K),

and Xs = 100 Km, the threshold neutral velocity perturbation is 1.5 x

10" 1 m/sec that is greater than (V^ | in the E region by about two orders of

magnitude. But, if the neutral wind blows dorainantly across the earth's mag-

netic field (i.e., \^~\^, it can be expected from (17b) that the threshold velo-

city in the F region is enhanced by another factor of n j/^ino ~ ' 400. In other

words, (Vth(~60m/sec) in the F region exceeds that in the E region by four

orders of magnitude. The threshold in the E region seems to be rather small

compared with the typical neutral velocity perturbation of gravity wave.s that is

of the order of 40 m/sec. However, a small threshold does not necessarily

ensure the growth rate to be large enough for the practical excitation of the ins-

tability. As shown later, the proposed instability can be only practically trig-

gered by gravity waves with periods of a few tens of minutes.

2.2 The growth rates

For the excitation of modes with Xs»(27rVte/f2 e) (Mn/2Me)
1/2~ 8 (13)

meters in the E (F) region, the coefficients of the cubic equation (20) have the

following simple form:

Ac^l 4- ^eno^inoA^ e^ i ~l-4 (E region ) and 1.0 (F region).
Bc=; 2 (Me/Mn) i/eno ~ 3.3 (E region) and 4.1 x lO~ 4 (F region),

no) (Me/Mn) [1- (l/3)(^ino/n ,)2(Vn/Vu)a]

1. 42x 10" 5(E region) and 1.0 x 10" 6 (F region),

D~ 4(ksVtei/eno/n e)
2(ks

2Vt
2/i/ino)(MeAln)[l-

•' -- 1.48xlO~5 (E region) and -1.86X10"12 (F region),

for Vn = 40m/sec, Xs = 100 Km, ^ino=5.8x 103 Hz(O.SHz), and feno = 9.2 xlO4

Hz (12 Hz), in the E (F) region. Therefore, instead of solving the cubic
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equation, 'y can be derived approximately from

Me^

Mn

'eno ivs Me_

'ino ^Mn Vth
- 1 (23)

where Vth is given by (22). Since Vn»Vth, Equation (23) can be written as

r*j /"«*_•

47T

x s i . n e n ,

47T vn

x..

1/2

1/2

' 2 . 0 x 1 0 3 sec l (E region)

6.0 x 10 5 sec 1 (F region, when

nz/

for Xs = 100 Km. It is apparent that the neutral-plasma interaction is much

more effective in the E region than in the F region. The growth rate is

inversely proportional to the scale length of field-aligned ionospheric irregulari-

ties that is of the order of the neutral wave wavelength. While a maximum

scale length of 400 Km was detected by ALTAIR from the horizontal wave

structure, the nighttime ionosphere spatially modulated with shorter scale

lengths (~35 Km) prior to the onset of ESF was sensed by the amplitude scin-

tillations of gesostationary satellite signals at 136 (MHz) (J.A. Klobuchar,

private communication, (1984). .The growth rate in the E region for

Xs = 35Km is 6.0 x 10"3 sec""1 in this situation. Since the wavelengths of neu-

tral waves are tens of kilometers or longer, the instability is expected to have
\

10"2 sec"1 as the upper bound of its growth rate in the ionospheric E region.

The growth rates have to exceed the molecular ion recombination rate

(~10~3 sec"1) for the operation of the instability.

In the formulation of the theory, Re(wa)j>_7 has been assumed, where o;a

is the angular frequency of the forced ion acoustic mode. The real angular fre-

quency, Re(u;a), is essentially equal to the neutral wave frequency (w0) because

of the excitation of ionospheric irregularities as nearly zero-frequency modes.
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This condition requires that the neutral wave frequency (uj0) be greater than

7~2.0 x 1CT3 Hz, namely, the neutral waves have periods (T0 = 27r/u;0) less

than one hour. A clear portrait of the neutral pump waves can be delineated at

this point: they are characterized with short periods (< one hour) and

wavelengths of tens to hundreds of kilometers.

0.30 Seeding the ESF

The neutral wave-plasma interaction, as shown above, is not effective

enough for the excitation of large-scale ionospheric irregularities in the F

region. One may note, however, from (24) that in the F region, 7 oc i/^o^ and

argue that smaller z^no at higher altitudes can lead to a larger growth rate. Two

other things should also be noted: (1) i/ino cannot be too small because

i/ino»7 has been assumed in the formulation of the theory, and (2) 700 v

and r^eno is smaller at higher altitudes. Actually, ^eno/^ino-^. 1Q2 at anv altitudeeno

in the ionosphere. Hence, even if we take veno/v-mo
 = 1°2» tne growth rate is

5.2xlO~ 4 sec"1 for Xs = 35 Km in the case that the neutral wind blows along

the earth's magnetic field. This growth rate can exceed the atomic ion recom-

bination rate above a certain height. Nevertheless, if the neutral wind blows

dominantly across the earth's magnetic field, the growth rate in the F' region is

reduced by at least two orders of magnitude. Moreover, the conditions for the

instability become extremely stringent when the parallel heat conduction loss in

the F region is not negligible. This effect can largely raise the threshold and

decrease the growth rate of the instability. The excitation of the instability with

a rather small growth rate requires almost a continuous source of neutral

waves.

While the forced ion acoustic modes are highly damped in the E region,

the concurrently excited large-scale ionospheric irregularities have much less

diffusion damping and can survive for hours after the disappearance of the
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neutral-wave source(s). The electric field perturbations associated with the

large-scale E region irregularities can extend along the geomagnetic field and

many onto the F region (Farley 1000). These Intense electric field perturba-

tions then seed the F region for the subsequent excitation of the Rayleigh-

Taylor instability that has been generally accepted to be the cause for the spread

F echoes on the ionograms and the plumes on the VHF backscatter radar maps.
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IV. Summary

The data measured by the Dynamics Explorer 2 spacecraft (DE-2) provide

a unique opportunity to determine many geographical parameters. In this

report we present the results of analyses on two sets of data measured in two

different days. On comparing the data, it is seen that there is a lasting effect of

previous magnetic activity on the fluctuations for day 81288 in that the fluctua-

tions are about double those for day 81248. This doubling is consistent with

the Joule heating for the two days. The power spectra are also in agreement

with this ratio. The ratio of powers being the square of the fluctuation ampli-

tude is found to be about 5.7 for oxygen and 4.0 for nitrogen. Our analyses

appear to favor Joule heating as the driver of observed wavelike fluctuations in

neutrals rather than precipitation. It may be that the neutrals are excited by the

entire auroral oval in the Joule heating, pulse and filtering yields wavelike,

rather than irregular, variation. Ion waves are then excited by the neutral

waves through the ion-neutral collisional coupling.

A theoretical model exploring the role of neutral waves on the generation

of large scale plasma density irregularities is also presented. This model is prel-

iminary in the sense that equational latitude is considered so that the effect of

anistropy introduced by the geomagnetic field on plasma motion is minimized.

This simplifies the analysis a great deal. Nevertheless, the results of the

analysis can be applied to explain the the equatorial spread F (ESF)

phenomenon. The neutral waves of interest are characterized by wavelengths

of tens to a few hundreds of kilometers and by periods of a few tens of

minutes. The efficient excitation of ionospheric irregularities by our proposed

mechanism relies on large plasma-neutral collisions. Such an optimum

environment can be provided by the E region rather than the F region. Since

neutral waves interact primarily with ions, the threshold of the instability is



- 32 -

determined by the ion heat conduction loss. It is shown that the plasma irregu-

larities can be generated within a few minutes when large amplitude gravity

waves are present.
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Fig. 1 Polar plots of the orbital passes for September 5, 1981,

day 81248, orbit number 492 and for October 15, 1981,

day 81288, orbit number 1071. The plot is invariant lati-

tude vs magnetic local time.

Fig. 2 Plots of electron precipitation (toppanel), electric field tur-

bulence (second panel) 8-16 Hz as dots and 4-16 kHz as

the letter O, electron temperature (middle panel), ion

density (fourth panel) and horizontal (H) and vertical (V)

winds vs time in hours and minutes UT, invariant lati-

tude, magnetic local time, altitude, local solar time, lati-

tude and longitude. This figure is for orbit 492. on day

81248 for the twelve minutes from 21:10 to 21:22.

Fig. 3 Plots of electron precipitation (top panel), electric field

turbulence (second panel) 8-16 HZ as dots and 4-16 kHz

as the letter 0, electron temperature (middle panel), ion

density (fourth panel) and horizontal (H) and vertical (V)

winds vs time in hours and minutes UT, invariant lati-

tude, magnetic local time, altitude local solar time, lati-

tude and longitude. This figure is for orbit 1071 on day

81288 for the twelve minutes from 21:10 to 21:22.
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Fig. 4 Graphs for day 81248 on the left and day 81288 on the

right. Each graph contains plots of the measured variation

in the x, y, z components of the magnetic field relative to

a Magsat model ABX, ABY , ABZ , the x component of

the electric field EX and the integrated downward Joule

heating flux SY vs time in hours and minutes UT for each

day. x is along the velocity vector of the spacecraft, y is

upward and z is eastward or westward according to the

spacecraft direction, north or south. The plot SY has

been plotted ,as positive to mean downward, opposite that

of the y axis.

Fig. 5 Graphs of the densities of oxygen, nitrogen and ions and

the electron temperature vs.time in seconds UT as well as

hours, minutes and seconds UT, shown above each graph.

Also given are scales for altitude, latitude, longitude, solar

zenith angle, local magnetic time and invariant latitude in

each graph. The density scales in particules/cm3 are loga-

rithmic and on the left and the temperature scale in °K is

. linear and on the right. The upper graph is for 81248.

The lower for 81288.

Fig. 6 Plots of fluctuations obtained by passing the logarithm of

the ion, oxygen and nitrogen densities through a bandpass

filter that passes structures with scale sizes from 90 to

1500 km. The plots are vs time in seconds UT. The data

are for orbit 492 on day 81248.
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Fig. 7 FFT spectra of the fluctuations in Figure 6 for day 81248.

The spectra are plotted vs period in seconds.

Fig. 8 Plots of fluctuations obtained by passing the logarithm of

the ion, oxygen and nitrogen densities through a bandpass

filter that passes structures with scale sizes from 90 to

1500 km. The plots are vs time in seconds UT. The data

are for orbit 492 on day 81288.

Fig. 9 Plots of fluctuations obtained by passing the logarithm of

the ion, oxygen and nitrogen densities through a bandpass

filter that passes structures with scale sizes from 90 to

1500 km. The plots are vs time in seconds UT. The data

are for orbit 492 on day 81288.



Fig. l Polar plots of the orbital passes for September 5, 1981,

day 81248, orbit number 492 and for October 15, 1981,

day 81288, orbit number 1071. The plot is invariant lati-

tude vs magnetic local time.
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ig. 6. Plots of fluctuations obtained by
passing the logarithm of the ion,
oxygen and nitrogen densities through

« a bandpass filter that passes struc-
tures with scale sizes from 90 to
1500 km. The plots are vs time in

"seconds UT. The data are for orbit
492 on day 81248.

Fig. 7. FFT spectra of the fluctuations in
Figure 6 for day 81248. The spectra
are plotted vs period in seconds.
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8. Same as Figure 6, but the data are
for day 81288.

Fig. 9. Same as Figure 7, but for the data
for day 81288.
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