79 research outputs found

    Modification of classical electron transport due to collisions between electrons and fast ions

    Full text link
    A Fokker-Planck model for the interaction of fast ions with the thermal electrons in a quasi-neutral plasma is developed. When the fast ion population has a net flux (i.e. the distribution of the fast ions is anisotropic in velocity space) the electron distribution function is significantly perturbed from Maxwellian by collisions with the fast ions, even if the fast ion density is orders of magnitude smaller than the electron density. The Fokker-Planck model is used to derive classical electron transport equations (a generalized Ohm's law and a heat flow equation) that include the effects of the electron-fast ion collisions. It is found that these collisions result in a current term in the transport equations which can be significant even when total current is zero. The new transport equations are analyzed in the context of a number of scenarios including α\alpha particle heating in ICF and MIF plasmas and ion beam heating of dense plasmas

    Deviations from the local field approximation in negative streamer heads

    Get PDF
    Negative streamer ionization fronts in nitrogen under normal conditions are investigated both in a particle model and in a fluid model in local field approximation. The parameter functions for the fluid model are derived from swarm experiments in the particle model. The front structure on the inner scale is investigated in a 1D setting, allowing reasonable run-time and memory consumption and high numerical accuracy without introducing super-particles. If the reduced electric field immediately before the front is >= 50kV/(cm bar), solutions of fluid and particle model agree very well. If the field increases up to 200kV/(cm bar), the solutions of particle and fluid model deviate, in particular, the ionization level behind the front becomes up to 60% higher in the particle model while the velocity is rather insensitive. Particle and fluid model deviate because electrons with high energies do not yet fully run away from the front, but are somewhat ahead. This leads to increasing ionization rates in the particle model at the very tip of the front. The energy overshoot of electrons in the leading edge of the front actually agrees quantitatively with the energy overshoot in the leading edge of an electron swarm or avalanche in the same electric field.Comment: The paper has 17 pages, including 15 figures and 3 table

    Formation of plasma around a small meteoroid: 1. Kinetic theory

    Full text link
    This article is a companion to Dimant and Oppenheim [2017] https://doi.org/10.1002/2017JA023963.This paper calculates the spatial distribution of the plasma responsible for radar head echoes by applying the kinetic theory developed in the companion paper. This results in a set of analytic expressions for the plasma density as a function of distance from the meteoroid. It shows that at distances less than a collisional mean free path from the meteoroid surface, the plasma density drops in proportion to 1/R where R is the distance from the meteoroid center; and, at distances much longer than the mean‐free‐path behind the meteoroid, the density diminishes at a rate proportional to 1/R2. The results of this paper should be used for modeling and analysis of radar head echoes.This work was supported by NSF grant AGS-1244842. (AGS-1244842 - NSF

    Index

    Get PDF
    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture of all instability classes at play, emphasis is put on the potentially dominant waves propagating obliquely to the beam direction, which have received little attention over the years. First, the basic derivation of the general dielectric function of a kinetic relativistic plasma is recalled. Next, an overview of two-dimensional unstable spectra associated with various beam-plasma distribution functions is given. Both cold-fluid and kinetic linear theory results are reported, the latter being based on waterbag and Maxwell–JĂŒttner model distributions. The main properties of the competing modes (developing parallel, transverse, and oblique to the beam) are given, and their respective region of dominance in the system parameter space is explained. Later sections address particle-in-cell numerical simulations and the nonlinear evolution of multidimensional beam-plasma systems. The elementary structures generated by the various instability classes are first discussed in the case of reduced-geometry systems. Validation of linear theory is then illustrated in detail for large-scale systems, as is the multistaged character of the nonlinear phase. Finally, a collection of closely related beam-plasma problems involving additional physical effects is presented, and worthwhile directions of future research are outlined.Original Publication: Antoine Bret, Laurent Gremillet and Mark Eric Dieckmann, Multidimensional electron beam-plasma instabilities in the relativistic regime, 2010, Physics of Plasmas, (17), 12, 120501-1-120501-36. http://dx.doi.org/10.1063/1.3514586 Copyright: American Institute of Physics http://www.aip.org/</p

    Collisionless heating in radio-frequency discharges: a review

    Get PDF
    Radio-frequency discharges are practically and scientifically interesting. A practical understanding of such discharges requires, among other things, a quantitative appreciation of the mechanisms involved in heating electrons, since this heating is the proximate cause of the ionization that sustains the plasma. When these discharges are operated at sufficiently low pressure, collisionless electron heating can be an important and even the dominant mechanism. Since the low pressure regime is important for many applications, understanding collisionless heating is both theoretically and practically important. This review is concerned with the state of theoretical knowledge of collisionless heating in both inductive and capacitive discharges

    Generalized Whittle-MatEˊ\acute{\text{E}}rn random field as a model of correlated fluctuations

    Full text link
    This paper considers a generalization of Gaussian random field with covariance function of Whittle-Mateˊ\acute{\text{e}}rn family. Such a random field can be obtained as the solution to the fractional stochastic differential equation with two fractional orders. Asymptotic properties of the covariance functions belonging to this generalized Whittle-Mateˊ\acute{\text{e}}rn family are studied, which are used to deduce the sample path properties of the random field. The Whittle-Mateˊ\acute{\text{e}}rn field has been widely used in modeling geostatistical data such as sea beam data, wind speed, field temperature and soil data. In this article we show that generalized Whittle-Mateˊ\acute{\text{e}}rn field provides a more flexible model for wind speed data.Comment: 22 pages, 10 figures, accepted by Journal of Physics

    Ionospheric gas dynamics of satellites and diagnostic probes

    Full text link
    The gas dynamics of interactions of a tenuous ionosphere with moving satellites and probes that have bearings on the diagnostics of the ionosphere are discussed. Emphasis is on the cases where the body is moving at mesothermal speeds, namely intermediate between the thermal speeds of ions and electrons of the ambient ionosphere. Methods of collision-free plasma kinetics with self-consistent field are used. The development of the topics for discussion starts with stationary Langmuir probe which entails the basic mechanism of body-plasma interaction that becomes further intricated as the body moves at a higher and higher speed. Applications of the theory of plasma interaction to meteors which move in the ionosphere are also presented.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43801/1/11214_2004_Article_BF00212707.pd
    • 

    corecore