A Fokker-Planck model for the interaction of fast ions with the thermal
electrons in a quasi-neutral plasma is developed. When the fast ion population
has a net flux (i.e. the distribution of the fast ions is anisotropic in
velocity space) the electron distribution function is significantly perturbed
from Maxwellian by collisions with the fast ions, even if the fast ion density
is orders of magnitude smaller than the electron density. The Fokker-Planck
model is used to derive classical electron transport equations (a generalized
Ohm's law and a heat flow equation) that include the effects of the
electron-fast ion collisions. It is found that these collisions result in a
current term in the transport equations which can be significant even when
total current is zero. The new transport equations are analyzed in the context
of a number of scenarios including α particle heating in ICF and MIF
plasmas and ion beam heating of dense plasmas