277 research outputs found

    Three Dimensional Superconductivity in FeSe with Tczero Up to 10.9 K Induced by Internal Strain

    Get PDF
    Polycrystalline sample FeSe was synthesized by a self-flux solution method which shows a zero resistance temperature up to 10.9 K and a Tconset (90% \rhon, \rhon: normal state resistivity) up to 13.3 K. The decrease of superconducting transition temperature by heat treatment indicates that internal crystallographic strain which plays the same effect as external pressure is the origin of its high Tc. The fluctuation conductivity was studied which could be well described by 3D Aslamazov-Larkin (AL) power law. The estimated value of coherence length \xic=9.2 \AA is larger than the distance between conducting layers (~6.0 \AA), indicating the three-dimensional nature of superconductivity in this compound.Comment: 5 figure

    Power Balance AODV Algorithm of WSN in Agriculture Monitoring

    Get PDF
     WSN (wireless sensor networks) is a kind of energy-constrained network, which has been widely used in precision agriculture environment monitoring. However, power balance is not taken into account in traditional routing algorithms. In this paper, a novel Power Balance Ad hoc On-Demand Distance Vector (PB-AODV) routing algorithm is proposed on cross-layer design to solve the problem of power balance. The main idea of our proposed algorithm is that, routing path is established by the received signal strength indication (RSSI) value in the route discovery process of PB-AODV. The optimal transmitting power which can be computed by RSSI value, power threshold and node’s surplus energy is encapsulated into route reply packet (RRP). Thus, the sender node can adaptively adjust its transmission power to save energy with the RRP. Simulation results show that the proposed algorithm is effective for load balancing, and increases the WSN’s lifetime about 14.3%

    Vacuum Filling Simulation with Combined Lagranian and VOF Method

    Get PDF
    Jetting succeeded by accumulation is the characteristic of the vacuum filling, which is different from the conventional pressure-driven flow. In order to simulate this kind of flow, a three-dimensional theoretical model in terms of incompressible and viscous flow is established, and an iterative method combined with finite element method (FEM) is proposed to solve the flow problem. The Lagranian-VOF method is constructed to trace the jetting and accumulated flow fronts. Based on the proposed model and algorithm, a simulation program is developed to predict the velocity, pressure, temperature, and advancement progress. To validate the model and algorithm, a visual experimental equipment for vacuum filling is designed and construted. The vacuum filling experiments with different viscous materials and negative pressures were conducted and compared the corresponding simulations. The results show the flow front shape closely depends on the fluid viscosity and less relates to the vacuum pressure

    A Linear-Time Algorithm for Finding Induced Planar Subgraphs

    Get PDF
    In this paper we study the problem of efficiently and effectively extracting induced planar subgraphs. Edwards and Farr proposed an algorithm with O(mn) time complexity to find an induced planar subgraph of at least 3n/(d+1) vertices in a graph of maximum degree d. They also proposed an alternative algorithm with O(mn) time complexity to find an induced planar subgraph graph of at least 3n/(bar{d}+1) vertices, where bar{d} is the average degree of the graph. These two methods appear to be best known when d and bar{d} are small. Unfortunately, they sacrifice accuracy for lower time complexity by using indirect indicators of planarity. A limitation of those approaches is that the algorithms do not implicitly test for planarity, and the additional costs of this test can be significant in large graphs. In contrast, we propose a linear-time algorithm that finds an induced planar subgraph of n-nu vertices in a graph of n vertices, where nu denotes the total number of vertices shared by the detected Kuratowski subdivisions. An added benefit of our approach is that we are able to detect when a graph is planar, and terminate the reduction. The resulting planar subgraphs also do not have any rigid constraints on the maximum degree of the induced subgraph. The experiment results show that our method achieves better performance than current methods on graphs with small skewness

    Glass formation and properties of Ge-Ga-Te-ZnI2 far infrared chalcohalide glasses

    No full text
    International audienceIn order to develop novel far infrared window material, a series of Ge-Ga-Te-ZnI2 chalcohalide glasses were prepared by traditional melt-quenching method and their glass-forming region was determined also. Here, some measurements including X-ray diffraction (XRD), differential thermal analysis (DTA), UV-Vis-NIR absorption spectrum, and infrared optical transmission spectra were carried out. The allowed indirect transition optical band gap was calculated according to the classical Tauc equation. The results show that with the addition of ZnI2, the glass-forming ability and thermal stability are improved gradually. With the contents of ZnI2 increased from 5 to 20 at.%, continued blue-shifting occurs in the cutting-off absorption edge of short-wavelength and the values of indirect optical band gaps were observed with ranges from 0.596 to 0.626 eV in these glasses. These GeTe4.3-GaTe3-ZnI2 glasses show wide optical transmission and the infrared cut-off wavelengths are larger than 25 ÎĽm, which implies that the Ge-Ga-Te-ZnI2 chalcogenide glasses possess the potential of far-IR optical window applications

    Preparation of Low-loss Ge15Ga10Te75 chalcogenide glass for far-IR optics applications

    No full text
    International audienceGe15Ga10Te75 (GGT) glass shows good transparency between 2 and 25 μm wavelengths, good chemical and thermal stability to be drawn into fiber, which appears to be a good candidate for developing far-IR fiber-optics devices, although there are strong absorption peaks caused by impurities in the glass. With the aim of decreasing the content of impurities and micro-crystal particles in prepared \GGT\ glass samples, a rapid heating furnace and the fast distillation method based on vapor evaporation plus deposition under vacuum condition was adopted. Properties measurements including Differential Scanning Calorimeter (DSC), Vis-NIR and \IR\ transmitting spectra were performed on the prepared glass samples. Dependence of optical loss on the types of oxygenic getters and their contents and glass quenching temperature was also studied. All these results show that the average optical losses of distilled glass samples were greatly improved by the designated purification processes. Besides, the quality of the glass samples can be improved with the optimized quenching temperature. In all, the optical loss of the glass can be reduced effectively. Minimum optical losses of 0.042 dB/mm at 9 μm and 0.037 dB/mm at 12 μm are obtained after a right purification process, which are the lowest loss of the \GGT\ chalcogenide glass nowadays
    • …
    corecore