44 research outputs found

    The global burden of cancer attributable to risk factors, 2010-19 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. Methods The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk-outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. Findings Globally, in 2019, the risk factors included in this analysis accounted for 4.45 million (95% uncertainty interval 4.01-4.94) deaths and 105 million (95.0-116) DALYs for both sexes combined, representing 44.4% (41.3-48.4) of all cancer deaths and 42.0% (39.1-45.6) of all DALYs. There were 2.88 million (2.60-3.18) risk-attributable cancer deaths in males (50.6% [47.8-54.1] of all male cancer deaths) and 1.58 million (1.36-1.84) risk-attributable cancer deaths in females (36.3% [32.5-41.3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20.4% (12.6-28.4) and DALYs by 16.8% (8.8-25.0), with the greatest percentage increase in metabolic risks (34.7% [27.9-42.8] and 33.3% [25.8-42.0]). Interpretation The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden. Copyright (C) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.Peer reviewe

    Burden of non-communicable diseases among adolescents aged 10–24 years in the EU, 1990–2019: a systematic analysis of the Global Burden of Diseases Study 2019

    Get PDF
    Background Disability and mortality burden of non-communicable diseases (NCDs) have risen worldwide; however, the NCD burden among adolescents remains poorly described in the EU. Methods Estimates were retrieved from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019. Causes of NCDs were analysed at three different levels of the GBD 2019 hierarchy, for which mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) were extracted. Estimates, with the 95% uncertainty intervals (UI), were retrieved for EU Member States from 1990 to 2019, three age subgroups (10–14 years, 15–19 years, and 20–24 years), and by sex. Spearman's correlation was conducted between DALY rates for NCDs and the Socio-demographic Index (SDI) of each EU Member State. Findings In 2019, NCDs accounted for 86·4% (95% uncertainty interval 83·5–88·8) of all YLDs and 38·8% (37·4–39·8) of total deaths in adolescents aged 10–24 years. For NCDs in this age group, neoplasms were the leading causes of both mortality (4·01 [95% uncertainty interval 3·62–4·25] per 100 000 population) and YLLs (281·78 [254·25–298·92] per 100 000 population), whereas mental disorders were the leading cause for YLDs (2039·36 [1432·56–2773·47] per 100 000 population) and DALYs (2040·59 [1433·96–2774·62] per 100 000 population) in all EU Member States, and in all studied age groups. In 2019, among adolescents aged 10–24 years, males had a higher mortality rate per 100 000 population due to NCDs than females (11·66 [11·04–12·28] vs 7·89 [7·53–8·23]), whereas females presented a higher DALY rate per 100 000 population due to NCDs (8003·25 [5812·78–10 701·59] vs 6083·91 [4576·63–7857·92]). From 1990 to 2019, mortality rate due to NCDs in adolescents aged 10–24 years substantially decreased (–40·41% [–43·00 to –37·61), and also the YLL rate considerably decreased (–40·56% [–43·16 to –37·74]), except for mental disorders (which increased by 32·18% [1·67 to 66·49]), whereas the YLD rate increased slightly (1·44% [0·09 to 2·79]). Positive correlations were observed between DALY rates and SDIs for substance use disorders (rs=0·58, p=0·0012) and skin and subcutaneous diseases (rs=0·45, p=0·017), whereas negative correlations were found between DALY rates and SDIs for cardiovascular diseases (rs=–0·46, p=0·015), neoplasms (rs=–0·57, p=0·0015), and sense organ diseases (rs=–0·61, p=0·0005)

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Seasonal Pattern of Cerebrovascular Fatalities in Cancer Patients

    No full text
    Cancer patients are at increased risk of cerebrovascular events. The incidence of those events and the associated mortality are known to follow a seasonal pattern in the general population. However, it is unclear whether cerebrovascular mortality in cancer patients has seasonal variation. To address this question, we performed a retrospective analysis of the seasonality of deaths due to the fact of cerebrovascular diseases among patients with first primary malignancy registered between 1975 and 2016 in the SEER database. The presence of seasonality in death rates was modeled using the cosinor approach assuming a circa-annual pattern. A significant seasonal pattern with a peak in the first half of November was identified in all patient groups. The same peak was observed in almost all subgroups of patients defined based on demographic characteristics. However, not all entity-defined subgroups showed a seasonal pattern, which might be explained by the different pathologic processes affecting the circulatory system in each cancer type. Based on our findings, one can propose that the active monitoring of cancer patients for cerebrovascular events from the late autumn and during the winter can help in the reduction of mortality in this patient population

    Seasonality of Deaths Due to Heart Diseases among Cancer Patients

    No full text
    Background and Objectives: Cancer patients are at increased short- and long-term risk of cardiac toxicity and mortality. It is well-known that cardiac morbidity and mortality follows a seasonal pattern. Here we address the question of whether heart disease-related fatalities among cancer patients also follow a seasonal pattern. Materials and Methods: We performed a retrospective analysis of seasonality of deaths due to heart diseases (n = 503,243) in patients with newly diagnosed cancer reported during the period from 1975 to 2016 in the US’s largest cancer registry—the Surveillance, Epidemiology, and End Results (SEER) database. Seasonality was assessed through a classical cosinor model assuming a single annual peak. Results: We identified a significant seasonal peak in the first half of November. A peak with identical features was for all subgroups of patients defined based on demographic characteristics. This was also the case when analysis was performed on subgroups defined by the type of malignancy. Only patients with acute leukemias, pancreatic cancer and nervous system malignancies did not have a seasonal pattern in heart disease-related fatalities. Conclusion: the rate of heart disease-related fatalities after cancer diagnosis follows a seasonal pattern similar to that observed for the general population, albeit with an earlier peak in November. This suggests that close monitoring of the cardiovascular system in cancer survivors must be particularly active from late autumn and during the entire winter period

    Seasonal Pattern of Cerebrovascular Fatalities in Cancer Patients

    No full text
    Cancer patients are at increased risk of cerebrovascular events. The incidence of those events and the associated mortality are known to follow a seasonal pattern in the general population. However, it is unclear whether cerebrovascular mortality in cancer patients has seasonal variation. To address this question, we performed a retrospective analysis of the seasonality of deaths due to the fact of cerebrovascular diseases among patients with first primary malignancy registered between 1975 and 2016 in the SEER database. The presence of seasonality in death rates was modeled using the cosinor approach assuming a circa-annual pattern. A significant seasonal pattern with a peak in the first half of November was identified in all patient groups. The same peak was observed in almost all subgroups of patients defined based on demographic characteristics. However, not all entity-defined subgroups showed a seasonal pattern, which might be explained by the different pathologic processes affecting the circulatory system in each cancer type. Based on our findings, one can propose that the active monitoring of cancer patients for cerebrovascular events from the late autumn and during the winter can help in the reduction of mortality in this patient population

    Relative Risk of Death in Bulgarian Cancer Patients during the Initial Waves of the COVID-19 Pandemic

    No full text
    Background: The COVID-19 pandemic has led to millions of documented deaths worldwide, with diverse distribution among countries. Surprisingly, Bulgaria, a middle-income European Union member state, ranked highest in COVID-19 mortality. This study aims to assess whether Bulgarian cancer patients experienced a higher relative risk (RR) of death compared to the general Bulgarian population during the pandemic. Materials and Methods: Data from the Bulgarian National Statistical Institute and the Bulgarian National Cancer Registry were analyzed to estimate monthly RR of death in cancer patients compared to the general population before and during the first two years of the pandemic. The impact of the COVID-19 waves and predominant SARS-CoV-2 variants on RR was evaluated on various cancer types and age groups using a multiple linear regression approach. Results: During the COVID-19 waves, both the general population and cancer patients experienced a significant increase in mortality rates. Surprisingly, the RR of death in cancer patients was lower during pandemic waves. The results from the statistical modeling revealed a significant association between the COVID-19 waves and reduced RR for all cancer patients. Notably, the effect was more pronounced during waves associated with the Alpha and Delta variants. The results also showed varying impacts of the COVID-19 waves on RR when we analyzed subsamples of data grouped depending on the cancer type, age and sex. Conclusions: Despite increased overall mortality in Bulgarian cancer patients during the pandemic, the RR of death was lower compared to the Bulgarian general population, indicating that protective measures were relatively effective in this vulnerable group. This study underscores the importance of implementing and encouraging preventive measures, especially in cancer patients, to mitigate the impact of future viral pandemics and reduce excess mortality

    A Novel Two-Gene Expression-Based Prognostic Score in Malignant Pleural Mesothelioma

    No full text
    Background: Malignant pleural mesothelioma (MPM) is a rare cancer type with an increasing incidence worldwide. We aimed to develop a rational gene expression-based prognostic score in MPM using publicly available datasets. Methods: We developed and validated a two-gene prognostic score (2-PS) using three independent publicly available gene expression datasets. The 2-PS was built using the Robust Likelihood-Based Survival Modeling with Microarray Data method. Results: We narrowed down the model building to the analysis of 179 genes, which have been shown previously to be of importance to MPM development. Our statistical approach showed that a model including two genes (GOLT1B and MAD2L1) was the best predictor for overall survival (OS) (p < 0.0001). The binary score based on the median of the continuous score stratified the patients into low and high score groups and also showed statistical significance in uni- and multivariate models. The 2-PS was validated using two independent transcriptomic datasets. Furthermore, gene set enrichment analysis using training and validation datasets showed that high score patients had distinct gene expression profiles. Our 2-PS also showed a correlation with the estimated infiltration by some immune cell fractions such as CD8+ T cells and M1/2 macrophages. Finally, 2-PS correlated with sensitivity or resistance to some commonly used chemotherapeutic drugs. Conclusion: This is the first study to demonstrate good performance of only two-gene expression-based prognostic scores in MPM. Our initial approach for features selection allowed for an increased likelihood for the predictive value of the developed score, which we were also able to demonstrate

    Novel multiplex bead-based assay for detection of IDH1 and IDH2 mutations in myeloid malignancies.

    Get PDF
    Isocitrate dehydrogenase 1 and 2 (IDH) mutations are frequently found in various cancer types such as gliomas, chondrosarcomas and myeloid malignancies. Their molecular detection has recently gained wide recognition in the diagnosis and prognosis of these neoplasms. For that purpose various molecular approaches have been used but a universally accepted method is still lacking. In this study we aimed to develop a novel bead-based liquid assay using Locked nucleic acids (LNA)-modified oligonucleotide probes for multiplexed detection of the most frequent IDH1 (p.R132C, p.R132G, p.R132H, p.R132L, p.R132S) and IDH2 (p.R140Q, p.R172K) mutations. The method includes four steps: 1) PCR amplification of the targeted fragments with biotinylated primers; 2) Direct hybridization to barcoded microbeads with specific LNA-modified oligonucleotide probes; 3) Incubation with phycoerythrin coupled streptavidin; 4) Acquisition of fluorescent intensities of each set of beads on a flow platform (LuminexCorp., USA). We tested the performance of the assay on both artificial plasmid constructs and on clinical samples from 114 patients with known or suspected myeloid malignancies. The method appeared to be superior to direct sequencing having a much higher sensitivity of 2.5% mutant alleles. Applying this method to patients' samples we identified a total of 9 mutations (one IDH1 p.R132C, seven IDH2 p.R140Q and one IDH2 p.R172K). In conclusion, this method could be successfully implemented in the diagnostic work-up for various tumors known to harbor IDH1/2 mutations (e.g. myeloid malignancies, gliomas, etc.). International initiatives are needed to validate the different existing methods for detection of IDH1/2 mutations in clinical settings
    corecore