46 research outputs found

    Assessing the impact of interfering organic matter on soil metaproteomic workflow

    Get PDF
    Funding: Matthias Waibel was funded by the University of Galway College of Science and the Irish Research Council under GOIPG/2016/1215. The James Hutton Institute receives funding support from the Rural and Environment Science and Analytical Services Division of the Scottish Government. Open access funding provided by IReL.Soil organic matter (SOM) is biologically, chemically, and physically complex. As a major store of nutrients within soil, it plays an important role in nutrient provision to plants. An enhanced understanding of SOM utilisation processes could underpin better fertiliser management for plant growth, with reduced environmental losses. Metaproteomics can allow the characterisation of protein profiles and could help gaining insights into SOM microbial decomposition mechanisms. Here, we applied three different extraction methods to two soil types to recover SOM with different characteristics. Specifically, water extractable organic matter, mineral associated organic matter and protein-bound organic matter were targeted with the aim to investigate the metaproteome enriched in those extractions. As a proof-of-concept replicated extracts from one soil were further analysed for peptide identification using liquid chromatography followed by tandem mass spectrometry. We employ a framework for mining mass spectra for both peptide assignment and fragmentation pattern characterisation. Different extracts were found to exhibit contrasting total protein and humic substance content for the two soils investigated. Overall, water extracts displayed the lowest humic substance content (in both soils) and the highest number of peptide identifications (in the soil investigated) with most frequent peptide hits associated with diverse substrate/ligand binding proteins of Proteobacteria and derived taxa. Our framework also highlighted a strong peptidic signal in unassigned and unmatched spectra, information that is currently not captured by the pipelines employed in this study. Taken together, this work points to specific areas for optimisation in chromatography and mass spectrometry to adequately characterise SOM associated metaproteomes.Publisher PDFPeer reviewe

    Nesprin-1-alpha2 associates with kinesin at myotube outer nuclear membranes, but is restricted to neuromuscular junction nuclei in adult muscle

    Get PDF
    This project was supported by grants from the British Heart Foundation (PG/11/71/29091 and PG/16/68/31991) and the Orthopaedic Institute Ltd., (RJAH Orthopaedic Hospital, Oswestry, UK).Nesprins, nuclear envelope spectrin-repeat proteins encoded by the SYNE1 and SYNE2 genes, are involved in localization of nuclei. The short isoform, nesprin-1-alpha2, is required for relocation of the microtubule organizer function from centromeres to the nuclear rim during myogenesis. Using specific antibodies, we now show that both nesprin-1-alpha2 and nesprin-1-giant co-localize with kinesin at the junctions of concatenated nuclei and at the outer poles of nuclear chains in human skeletal myotubes. In adult muscle, nesprin-1-alpha2 was found, together with kinesin, only on nuclei associated with neuromuscular junctions, whereas all adult cardiomyocyte nuclei expressed nesprin-1-alpha2. In a proteomics study, kinesin heavy and light chains were the only significant proteins in myotube extracts pulled down by nesprin-1-alpha2, but not by a mutant lacking the highly-conserved STAR domain (18 amino-acids, including the LEWD motif). The results support a function for nesprin-1-alpha2 in the specific localization of skeletal muscle nuclei mediated by kinesins and suggest that its primary role is at the outer nuclear membrane.Publisher PDFPeer reviewe

    Autologous chondrocyte implantation- derived synovial fluids display distinct responder and non-responder proteomic profiles

    Get PDF
    Background Autologous chondrocyte implantation (ACI) can be used in the treatment of focal cartilage injuries to prevent the onset of osteoarthritis (OA). However, we are yet to understand fully why some individuals do not respond well to this intervention. Identification of a reliable and accurate biomarker panel that can predict which patients are likely to respond well to ACI is needed in order to assign the patient to the most appropriate therapy. This study aimed to compare the baseline and mid-treatment proteomic profiles of synovial fluids (SFs) obtained from responders and non-responders to ACI. Methods SFs were derived from 14 ACI responders (mean Lysholm improvement of 33 (17–54)) and 13 non-responders (mean Lysholm decrease of 14 (4–46)) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Label-free proteome profiling of dynamically compressed SFs was used to identify predictive markers of ACI success or failure and to investigate the biological pathways involved in the clinical response to ACI. Results Only 1 protein displayed a =2.0-fold differential abundance in the preclinical SF of ACI responders versus non-responders. However, there is a marked difference between these two groups with regard to their proteome shift in response to cartilage harvest, with 24 and 92 proteins showing =2.0-fold differential abundance between Stages I and II in responders and non-responders, respectively. Proteomic data has been uploaded to ProteomeXchange (identifier: PXD005220). We have validated two biologically relevant protein changes associated with this response, demonstrating that matrix metalloproteinase 1 was prominently elevated and S100 calcium binding protein A13 was reduced in response to cartilage harvest in non-responders. Conclusions The differential proteomic response to cartilage harvest noted in responders versus non-responders is completely novel. Our analyses suggest several pathways which appear to be altered in non-responders that are worthy of further investigation to elucidate the mechanisms of ACI failure. These protein changes highlight many putative biomarkers that may have potential for prediction of ACI treatment success

    Two independent proteomic approaches provide a comprehensive analysis of the synovial fluid proteome response to Autologous Chondrocyte Implantation

    Get PDF
    Background: Autologous chondrocyte implantation (ACI) has a failure rate of approximately 20%, but it is yet to be fully understood why. Biomarkers are needed that can pre-operatively predict in which patients it is likely to fail, so that alternative or individualised therapies can be offered. We previously used label-free quantitation (LF) with a dynamic range compression proteomic approach to assess the synovial fluid (SF) of ACI responders and non-responders. However, we were able to identify only a few differentially abundant proteins at baseline. In the present study, we built upon these previous findings by assessing higher-abundance proteins within this SF, providing a more global proteomic analysis on the basis of which more of the biology underlying ACI success or failure can be understood. Methods: Isobaric tagging for relative and absolute quantitation (iTRAQ) proteomic analysis was used to assess SF from ACI responders (mean Lysholm improvement of 33; n = 14) and non-responders (mean Lysholm decrease of 14; n = 13) at the two stages of surgery (cartilage harvest and chondrocyte implantation). Differentially abundant proteins in iTRAQ and combined iTRAQ and LF datasets were investigated using pathway and network analyses. Results: iTRAQ proteomic analysis confirmed our previous finding that there is a marked proteomic shift in response to cartilage harvest (70 and 54 proteins demonstrating ≥ 2.0-fold change and p < 0.05 between stages I and II in responders and non-responders, respectively). Further, it highlighted 28 proteins that were differentially abundant between responders and non-responders to ACI, which were not found in the LF study, 16 of which were altered at baseline. The differential expression of two proteins (complement C1s subcomponent and matrix metalloproteinase 3) was confirmed biochemically. Combination of the iTRAQ and LF proteomic datasets generated in-depth SF proteome information that was used to generate interactome networks representing ACI success or failure. Functional pathways that are dysregulated in ACI non-responders were identified, including acute-phase response signalling. Conclusions: Several candidate biomarkers for baseline prediction of ACI outcome were identified. A holistic overview of the SF proteome in responders and non-responders to ACI  has been profiled, providing a better understanding of the biological pathways underlying clinical outcome, particularly the differential response to cartilage harvest in non-responders

    Responding to GPs' information resource needs: implementation and evaluation of a complementary medicines information resource in Queensland general practice

    Get PDF
    Background: Australian General Practitioners (GPs) are in the forefront of primary health care and in an excellent position to communicate with their patients and educate them about Complementary Medicines (CMs) use. However previous studies have demonstrated that GPs lack the knowledge required about CMs to effectively communicate with patients about their CMs use and they perceive a need for information resources on CMs to use in their clinical practice. This study aimed to develop, implement, and evaluate a CMs information resource in Queensland (Qld) general practice.Methods: The results of the needs assessment survey of Qld general practitioners (GPs) informed the development of a CMs information resource which was then put through an implementation and evaluation cycle in Qld general practice. The CMs information resource was a set of evidence-based herbal medicine fact sheets. This resource was utilised by 100 Qld GPs in their clinical practice for four weeks and was then evaluated. The evaluation assessed GPs' (1) utilisation of the resource (2) perceived quality, usefulness and satisfaction with the resource and (3) perceived impact of the resource on their knowledge, attitudes, and practice of CMs.Results: Ninety two out of the 100 GPs completed the four week evaluation of the fact sheets and returned the post-intervention survey. The herbal medicine fact sheets produced by this study were well accepted and utilised by Qld GPs. The majority of GPs perceived that the fact sheets were a useful resource for their clinical practice. The fact sheets improved GPs' attitudes towards CMs, increased their knowledge of those herbal medicines and improved their communication with their patients about those specific herbs. Eighty-six percent of GPs agreed that if they had adequate resources on CMs, like the herbal medicine fact sheets, then they would communicate more to their patients about their use of CMs.Conclusion: Further educational interventions on CMs need to be provided to GPs to increase their knowledge of CMs and to improve their communication with patients about their CMs use

    Kdm3a lysine demethylase is an Hsp90 client required for cytoskeletal rearrangements during spermatogenesis

    Get PDF
    The lysine demethylase Kdm3a (Jhdm2a, Jmjd1a) is required for male fertility, sex determination, and metabolic homeostasis through its nuclear role in chromatin remodeling. Many histone-modifying enzymes have additional nonhistone substrates, as well as nonenzymatic functions, contributing to the full spectrum of events underlying their biological roles. We present two Kdm3a mouse models that exhibit cytoplasmic defects that may account in part for the globozoospermia phenotype reported previously. Electron microscopy revealed abnormal acrosome and manchette and the absence of implantation fossa at the caudal end of the nucleus in mice without Kdm3a demethylase activity, which affected cytoplasmic structures required to elongate the sperm head. We describe an enzymatically active new Kdm3a isoform and show that subcellular distribution, protein levels, and lysine demethylation activity of Kdm3a depended on Hsp90. We show that Kdm3a localizes to cytoplasmic structures of maturing spermatids affected in Kdm3a mutant mice, which in turn display altered fractionation of beta-actin and gamma-tubulin. Kdm3a is therefore a multifunctional Hsp90 client protein that participates directly in the regulation of cytoskeletal components.Publisher PDFPeer reviewe

    The Use of ESI-MS to Probe the Binding of Divalent Cations to Calmodulin

    Get PDF
    Proteins have evolved with distinct sites for binding particular metal ions. This allows metalloproteins to perform a myriad of specialized tasks with conformations tailor-made by the combination of its primary sequence and the effect on this of the ligated metal ion. Here we investigate the selectivity of the calcium trigger protein calmodulin for divalent metal ions. This ubiquitous and highly abundant protein exists in equilibrium between its apo and its holo form wherein four calcium ions are bound. Amongst its many functions, calmodulin modulates the calcium concentration present in cells, but this functional property renders it a target for competition from other metal ions. We study the competition posed by four other divalent cations for the calcium binding sites in calmodulin using electrospray ionization mass spectrometry (ESI-MS). We have chosen two other group II cations Mg2+, Sr2+, and two heavy metals Cd2+, Pb2+. The ease with which each of these metals binds to apo and to holo CaM[4Ca] is described. We find that each metal ion has different properties with respect to calmodulin binding and competition with calcium. The order of affinity for apo CaM is Ca2+ ≫ Sr2+ ∼ Mg2+ > Pb2+ ∼ Cd2+. In the presence of calcium the affinity alters to Pb2+ > Ca2+ > Cd2+ > Sr2+ > Mg2+. Once complexes have been formed between the metal ions and protein (CaM:[xM]) we investigate whether the structural change which must accompanies calcium ligation to allow target binding takes place for a given CaM:[xM] system. We use a 20 residue target peptide, which forms the CaM binding site within the enzyme neuronal nitric-oxide synthase. Our earlier work (Shirran et al. 2005) [1] has demonstrated the particular selectivity of this system for CaM:4Ca2+. We find that along with Ca2+ only Pb2+ forms complexes of the form CaM:4M2+:nNOS. This work demonstrates the affinity for calcium above all other metals, but also warns about the ability of lead to replace calcium with apparent ease

    Absorbent products for containing urinary and/or fecal incontinence in adults

    No full text

    An interaction of heart disease-associated proteins POPDC1/2 with XIRP1 in transverse tubules and intercalated discs

    Get PDF
    This work was supported by the British Heart Foundation [PG/16/68/31991; to IH and GEM], [PG/19/13/34247; to TB] and the Orthopaedic Institute Ltd., RJAH Orthopaedic Hospital, Oswestry UK [RPG141 and RPG189; to IH and GEM].Background : Popeye domain-containing proteins 1 and 2 (POPDC1 and POPDC2) are transmembrane proteins involved in cyclic AMP-mediated signalling processes and are required for normal cardiac pacemaking and conduction. In order to identify novel protein interaction partners, POPDC1 and 2 proteins were attached to beads and compared by proteomic analysis with control beads in the pull-down of proteins from cultured human skeletal myotubes. Results : There were highly-significant interactions of both POPDC1 and POPDC2 with XIRP1 (Xin actin binding repeat-containing protein 1), actin and, to a lesser degree, annexin A5. In adult human skeletal muscle, both XIRP1 and POPDC1/2 were present at the sarcolemma and in T-tubules. The interaction of POPDC1 with XIRP1 was confirmed in adult rat heart extracts. Using new monoclonal antibodies specific for POPDC1 and POPDC2, both proteins, together with XIRP1, were found mainly at intercalated discs but also at T-tubules in adult rat and human heart. Conclusions : Mutations in human POPDC1, POPDC2 and in human XIRP1, all cause pathological cardiac arrhythmias, suggesting a possible role for POPDC1/2 and XIRP1 interaction in normal cardiac conduction.Publisher PDFPeer reviewe

    CONGENITAL MUSCULAR DYSTROPHIES

    No full text
    corecore