138 research outputs found

    Galectin-1 serum levels reflect tumor burden and adverse clinical features in classical Hodgkin lymphoma

    Get PDF
    Galectin-1 (Gal1) is a member of a highly conserved family of carbohydrate-binding proteins that modulates innate and adaptive immune responses and fosters tumor-immune escape. Hodgkin lymphoma (HL) Reed-Sternberg (RS) cells overexpress and secrete Gal1, which selectively kills Th1,Th17 and cytotoxic T cells and promotes the immunosuppressive Th2/Treg-predominant HL microenvironment. We developed a sandwich ELISA and assessed serum Gal1 levels in 315 newly diagnosed, previously untreated HL patients enrolled on 3 risk-adapted clinical trials. Serum Gal1 levels were significantly higher in HL patients than in normal controls (p < .0001). Gal1 serum levels also increased with Ann Arbor stage (p < .0001), areas of nodal involvement (p = .0001) and the International Prognostic Score (IPS) (2-7, p = .006). We conclude that Gal1 serum levels are significantly associated with tumor burden and additional adverse clinical characteristics in newly diagnosed HL Patients.Fil: Ouyang, Jing. Dana-Farber Cancer Institute. Department of Medical Oncology; Estados Unidos de AmĂ©rica;Fil: PlĂŒtschow, Annette. German Hodgkin Study Group; Alemania;Fil: Von Strandmann, Elke Pogge. University Hospital of Cologne. Laboratory for Immunotherapy; Alemania;Fil: Reiners, Katrin S.. University Hospital of Cologne. Laboratory for Immunotherapy; Alemania;Fil: Ponader, Sabine. German Hodgkin Study Group; Alemania;Fil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental (i); Argentina;Fil: Neuberg, Donna. Dana-Farber Cancer Institute. Department of Biostatistics; Estados Unidos de AmĂ©rica;Fil: Engert, Andreas. German Hodgkin Study Group; Alemania;Fil: Shipp, Margaret A.. Dana-Farber Cancer Institute. Department of Medical Oncology; Estados Unidos de AmĂ©rica

    Inactivation of the PRDM1/BLIMP1 gene in diffuse large B cell lymphoma

    Get PDF
    PR domain containing 1 with zinc finger domain (PRDM1)/B lymphocyte–induced maturation protein 1 (BLIMP1) is a transcriptional repressor expressed in a subset of germinal center (GC) B cells and in all plasma cells, and required for terminal B cell differentiation. The BLIMP1 locus lies on chromosome 6q21-q22.1, a region frequently deleted in B cell lymphomas, suggesting that it may harbor a tumor suppressor gene. We report here that the BLIMP1 gene is inactivated by structural alterations in 24% (8 out of 34) activated B cell–like diffuse large cell lymphoma (ABC-DLBCL), but not in GC B cell–like (n = 0/37) or unclassified (n = 0/21) DLBCL. BLIMP1 alterations included gene truncations, nonsense mutations, frameshift deletions, and splice site mutations that generate aberrant transcripts encoding truncated BLIMP1 proteins. In all cases studied, both BLIMP1 alleles were inactivated by deletions or mutations. Furthermore, most non–GC type DLBCL cases (n = 20/26, 77%) lack BLIMP1 protein expression, despite the presence of BLIMP1 mRNA. These results indicate that a sizable fraction of ABC-DLBCL carry an inactive BLIMP1 gene, and suggest that the same gene is inactivated by epigenetic mechanisms in an additional large number of cases. These findings point to a role for BLIMP1 as a tumor suppressor gene, whose inactivation may contribute to lymphomagenesis by blocking post–GC differentiation of B cells toward plasma cells

    MLL-rearranged B lymphoblastic leukemias selectively express the immunoregulatory carbohydrate-binding protein galectin-1

    Get PDF
    Leukemias with 11q23 translocations involving the Mixed Lineage Leukemia (MLL) gene exhibit unique clinical and biological features and have a poor prognosis. In a screen for molecular markers of MLL rearrangement, we identified the specific overexpression of an immunomodulatory lectin Galectin-1 (Gal1) in MLL-rearranged B lymphoblastic leukemias (B-ALL) compared to other MLL-germline ALLs. To assess the diagnostic utility of Gal1 expression in identifying MLL-rearranged B-ALLs, we performed Gal1 immunostaining on a large series of primary ALLs with known MLL status. All 11 MLL-rearranged B-ALLs had abundant Gal1 expression; in marked contrast, only 1 of 42 germline-MLL B-ALLs expressed Gal1. In addition, Gal1 was readily detected in diagnostic samples of MLL-rearranged B-ALLs by intracellular flow cytometry. Since deregulated gene expression in MLL-rearranged leukemias may be related to the altered histone methyltransferase activity of MLL fusion protein complex, we analyzed histone H3 lysine 79 (H3K79) dimethylation in the Gal1 promoter region using chromatin immunoprecipitation. Gal1 promoter H3K79diMe was ≈ 5 fold higher in a MLL-rearranged B-ALL cell line than in a B-ALL line without the MLL translocation. Furthermore, the Gal1 promoter H3K79 was significantly hypermethylated in primary MLL-rearranged B-ALLs compared to MLL-germline B-ALLs and normal pre-B cells, implicating this epigenetic modification as a mechanism for Gal1 overexpression in MLL B-ALL.Fil: Juszczynski, Przemyslaw. Dana Farber Cancer Institute; Estados UnidosFil: Rodig, Scott J.. Brigham & Women; Estados UnidosFil: Ouyang, Jing. Dana Farber Cancer Institute; Estados UnidosFil: OÂŽDonnell, Evan. Dana Farber Cancer Institute; Estados UnidosFil: Takeyama, Kunihiko. Dana Farber Cancer Institute; Estados UnidosFil: Mlynarski, Wojciech. Dana Farber Cancer Institute; Estados UnidosFil: Mycko, Katarzyna. Dana Farber Cancer Institute; Estados UnidosFil: Szczepanski, Tomasz. Dana Farber Cancer Institute; Estados UnidosFil: Gaworczyk, Anna. Medical University of Lodz; PoloniaFil: Krivtsov, Andrei. Medical University of Lodz; PoloniaFil: Faber, Joerg. Medical University of Silesia; PoloniaFil: Sinha, Amit U.. Medical University of Lublin; PoloniaFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental (i); Argentina; ArgentinaFil: Armstrong, Scott A.. Children; Estados UnidosFil: Kutok, Jeffery. Children; Estados UnidosFil: Shipp, Margaret A.. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de BiologĂ­a y Medicina Experimental (i); Argentina; Argentin

    NLRC5/MHC class I transactivator is a target for immune evasion in cancer

    Get PDF
    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as “NLRC5” [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and ÎČ2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers

    Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma

    Get PDF
    Hodgkin, 9p24Purpose Hodgkin Reed-Sternberg cells harbor alterations in chromosome 9p24.1, leading to overexpression of programmed death-ligand 1 (PD-L1) and PD-L2. Pembrolizumab, a programmed death 1-blocking antibody, demonstrated a high overall response rate (ORR) in patients with relapsed or refractory classic Hodgkin lymphoma (rrHL) in phase I testing. Methods KEYNOTE-087 ( ClinicalTrials.gov identifier, NCT02453594) was a single-arm phase II study of pembrolizumab in three cohorts of patients with rrHL, defined on the basis of lymphoma progression after (1) autologous stem cell transplantation (ASCT) and subsequent brentuximab vedotin (BV); (2) salvage chemotherapy and BV, and thus, ineligible for ASCT because of chemoresistant disease; and (3) ASCT, but without BV after transplantation. Patients received pembrolizumab 200 mg once every 3 weeks. Response was assessed every 12 weeks. The primary end points were ORR by central review and safety. Results A total of 210 patients were enrolled and treated (69 in cohort 1, 81 in cohort 2, and 60 in cohort 3). At the time of analysis, patients received a median of 13 treatment cycles. Per central review, the ORR was 69.0% (95% CI, 62.3% to 75.2%), and the complete response rate was 22.4% (95% CI, 16.9% to 28.6%). By cohort, ORRs were 73.9% for cohort 1, 64.2% for cohort 2, and 70.0% for cohort 3. Thirty-one patients had a response 65 6 months. The safety profile was largely consistent with previous pembrolizumab studies. Conclusion Pembrolizumab was associated with high response rates and an acceptable safety profile in patients with rrHL, offering a new treatment paradigm for this disease

    The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo

    Get PDF
    SummaryResearch over the past decade has suggested important roles for pseudogenes in physiology and disease. In vitro experiments demonstrated that pseudogenes contribute to cell transformation through several mechanisms. However, in vivo evidence for a causal role of pseudogenes in cancer development is lacking. Here, we report that mice engineered to overexpress either the full-length murine B-Raf pseudogene Braf-rs1 or its pseudo “CDS” or “3â€Č UTR” develop an aggressive malignancy resembling human diffuse large B cell lymphoma. We show that Braf-rs1 and its human ortholog, BRAFP1, elicit their oncogenic activity, at least in part, as competitive endogenous RNAs (ceRNAs) that elevate BRAF expression and MAPK activation in vitro and in vivo. Notably, we find that transcriptional or genomic aberrations of BRAFP1 occur frequently in multiple human cancers, including B cell lymphomas. Our engineered mouse models demonstrate the oncogenic potential of pseudogenes and indicate that ceRNA-mediated microRNA sequestration may contribute to the development of cancer

    Immunohistochemical Detection of MYC-driven Diffuse Large B-Cell Lymphomas

    Get PDF
    Diffuse large B cell lymphoma (DLBCL) is a clinically and genetically heterogeneous disease. A small subset of DLBCLs has translocations involving the MYC locus and an additional group has a molecular signature resembling Burkitt lymphoma (mBL). Presently, identification of such cases by morphology is unreliable and relies on cytogenetic or complex molecular methods such as gene transcriptional profiling. Herein, we describe an immunohistochemical (IHC) method for identifying DLBCLs with increased MYC protein expression. We tested 77 cases of DLBCL and identified 15 cases with high MYC protein expression (nuclear staining in >50% of tumor cells). All MYC translocation positive cases had increased MYC protein expression by this IHC assay. In addition, gene set enrichment analysis (GSEA) of the DLBCL transcriptional profiles revealed that tumors with increased MYC protein expression (regardless of underlying MYC translocation status) had coordinate upregulation of MYC target genes, providing molecular confirmation of the IHC results. We then generated a molecular classifier derived from the MYC IHC results in our cases and employed it to successfully classify mBLs from two previously reported independent case series, providing additional confirmation that the MYC IHC results identify clinically important subsets of DLBCLs. Lastly, we found that DLBCLs with high MYC protein expression had inferior overall survival when treated with R-CHOP. In conclusion, the IHC method described herein can be used to readily identify the biologically and clinically distinct cases of MYC-driven DLBCL, which represent a clinically significant subset of DLBCL cases due to their inferior overall survival

    The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

    Get PDF
    Increasing knowledge concerning the biology of hematologic malignancies as well as the role of the immune system in the control of these diseases has led to the development and approval of immunotherapies that are resulting in impressive clinical responses. Therefore, the Society for Immunotherapy of Cancer (SITC) convened a hematologic malignancy Cancer Immunotherapy Guidelines panel consisting of physicians, nurses, patient advocates, and patients to develop consensus recommendations for the clinical application of immunotherapy for patients with multiple myeloma, lymphoma, and acute leukemia. These recommendations were developed following the previously established process based on the Institute of Medicine’s clinical practice guidelines. In doing so, a systematic literature search was performed for high-impact studies from 2004 to 2014 and was supplemented with further literature as identified by the panel. The consensus panel met in December of 2014 with the goal to generate consensus recommendations for the clinical use of immunotherapy in patients with hematologic malignancies. During this meeting, consensus panel voting along with discussion were used to rate and review the strength of the supporting evidence from the literature search. These consensus recommendations focus on issues related to patient selection, toxicity management, clinical endpoints, and the sequencing or combination of therapies. Overall, immunotherapy is rapidly emerging as an effective therapeutic strategy for the management of hematologic malignances. Evidence-based consensus recommendations for its clinical application are provided and will be updated as the field evolves

    The Public Repository of Xenografts enables discovery and randomized phase II-like trials in mice

    Get PDF
    More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease
    • 

    corecore