15 research outputs found
Broad Ranges of Affinity and Specificity of Anti-Histone Antibodies Revealed by a Quantitative Peptide Immunoprecipitation Assay
Antibodies directed against histone posttranslational modifications (PTMs) are critical tools in epigenetics research, particularly in the widely used chromatin immunoprecipitation (ChIP) experiments. However, a lack of quantitative methods for characterizing such antibodies has been a major bottleneck in accurate and reproducible analysis of histone modifications. Here, we report a simple and sensitive method for quantitatively characterizing polyclonal and monoclonal antibodies for histone PTMs in a ChIP-like format. Importantly, it determines the apparent dissociation constants for the interactions of an antibody with peptides harboring cognate or off-target PTMs. Analyses of commercial antibodies revealed large ranges of affinity, specificity and binding capacity as well as substantial lot-to-lot variations, suggesting the importance of quantitatively characterizing each antibody intended to be used in ChIP experiments and optimizing experimental conditions accordingly. Furthermore, using this method we identified additional factors potentially affecting the interpretation of ChIP experiments
Chelation of cadmium ions by phytochelatin synthas : role of the cystein-rich C-terminal
The interactions between Cd^ and the C-terminal region of phytochelatin (PC) synthase using recombinant wild-type and mutant PC synthase were studied. We show that site-directed mutagenesis of Cys residues at C^C^XXXC^XXC^ motif decreases the number of Cd^ and other heavy metal ions interacting with the enzyme, and that the motif binds the metals discriminatingly. The optimum binding ratio of PC synthase to Cd^ was also determined. The findings indicate that Cys exists as a free SH residue and that it is involved in the regulation of PC enzyme activity by transferring the metals into closer proximity with the catalytic domain. These results are important in understanding heavy metal detoxification mechanisms in higher plants, a step towards phytoremediated-applications
Positive Cooperativity of the p97 AAA ATPase Is Critical for Essential Functions*
p97 is composed of two conserved AAA (ATPases associated with diverse cellular activities) domains, which form a tandem hexameric ring. We characterized the ATP hydrolysis mechanism of CDC-48.1, a p97 homolog of Caenorhabditis elegans. The ATPase activity of the N-terminal AAA domain was very low at physiological temperature, whereas the C-terminal AAA domain showed high ATPase activity in a coordinated fashion with positive cooperativity. The cooperativity and coordination are generated by different mechanisms because a noncooperative mutant still showed the coordination. Interestingly, the growth speed of yeast cells strongly related to the positive cooperativity rather than the ATPase activity itself, suggesting that the positive cooperativity is critical for the essential functions of p97
Broad Ranges of Affinity and Specificity of Anti-Histone Antibodies Revealed by a Quantitative Peptide Immunoprecipitation Assay
Antibodies directed against histone posttranslational modifications (PTMs) are critical tools in epigenetics research, particularly in the widely used chromatin immunoprecipitation (ChIP) experiments. However, a lack of quantitative methods for characterizing such antibodies has been a major bottleneck in accurate and reproducible analysis of histone modifications. Here, we report a simple and sensitive method for quantitatively characterizing polyclonal and monoclonal antibodies for histone PTMs in a ChIP-like format. Importantly, it determines the apparent dissociation constants for the interactions of an antibody with peptides harboring cognate or off-target PTMs. Analyses of commercial antibodies revealed large ranges of affinity, specificity and binding capacity as well as substantial lot-to-lot variations, suggesting the importance of quantitatively characterizing each antibody intended to be used in ChIP experiments and optimizing experimental conditions accordingly. Furthermore, using this method we identified additional factors potentially affecting the interpretation of ChIP experiments