5 research outputs found

    Predictive factors of mortality of patients with fragility hip fractures at 1 year after discharge : A multicenter, retrospective study in the northern Kyushu district of Japan

    Get PDF
    Purpose: Fragility hip fractures (FHFs) are associated with a high risk of mortality, but the relative contribution of various factors remains controversial. This study aimed to evaluate predictive factors of mortality at 1 year after discharge in Japan. Methods: A total of 497 patients aged 60 years or older who sustained FHFs during follow-up were included in this study. Expected variables were finally assessed using multivariable Cox proportional hazards models. Results: The 1-year mortality rate was 9.1% (95% confidence interval: 6.8–12.0%, n = 45). Log-rank test revealed that previous fractures (p = 0.003), Barthel index (BI) at discharge (p = 0.011), and place-to-discharge (p = 0.004) were significantly associated with mortality for male patients. Meanwhile, body mass index (BMI; p = 0.023), total Charlson comorbidity index (TCCI; p = 0.005), smoking (p = 0.007), length of hospital stay (LOS; p = 0.009), and BI (p = 0.004) were the counterparts for females. By multivariate analyses, previous vertebral fractures (hazard ratio (HR) 3.33; p = 0.044), and BI <30 (HR 5.42, p = 0.013) were the predictive variables of mortality for male patients. BMI <18.5 kg/m2 (HR 2.70, p = 0.023), TCCI ≥5 (HR 2.61, p = 0.032), smoking history (HR 3.59, p = 0.018), LOS <14 days (HR 13.9; p = 0.007), and BI <30 (HR 2.76; p = 0.049) were the counterparts for females. Conclusions: Previous vertebral fractures and BI <30 were the predictive variables of mortality for male patients, and BMI <18.5 kg/m2, TCCI ≥5, smoking history, LOS <14 days, and BI <30 were those for females. Decreased BI is one of the independent and preventable risk factors. A comprehensive therapeutic approach should be considered to prevent deterioration of activities of daily living and a higher risk of mortality

    Modeling Light Adaptation in Circadian Clock: Prediction of the Response That Stabilizes Entrainment

    Get PDF
    Periods of biological clocks are close to but often different from the rotation period of the earth. Thus, the clocks of organisms must be adjusted to synchronize with day-night cycles. The primary signal that adjusts the clocks is light. In Neurospora, light transiently up-regulates the expression of specific clock genes. This molecular response to light is called light adaptation. Does light adaptation occur in other organisms? Using published experimental data, we first estimated the time course of the up-regulation rate of gene expression by light. Intriguingly, the estimated up-regulation rate was transient during light period in mice as well as Neurospora. Next, we constructed a computational model to consider how light adaptation had an effect on the entrainment of circadian oscillation to 24-h light-dark cycles. We found that cellular oscillations are more likely to be destabilized without light adaption especially when light intensity is very high. From the present results, we predict that the instability of circadian oscillations under 24-h light-dark cycles can be experimentally observed if light adaptation is altered. We conclude that the functional consequence of light adaptation is to increase the adjustability to 24-h light-dark cycles and then adapt to fluctuating environments in nature
    corecore