26 research outputs found

    Novel Membrane-Associated Androgen Receptor Splice Variant Potentiates Proliferative and Survival Responses in prostate cancer cells

    Get PDF
    Progression from the androgen-sensitive to androgen-insensitive (or castration-resistant) stage is the major obstacle for sustained effectiveness of hormonal therapy for prostate cancer. The androgen receptor (AR) and its splice variants play important roles in regulating the transcription program essential for castration resistance. Here, we report the identification of a novel AR splice variant, designated as AR8, which is up-regulated in castration-resistant prostate cancer cells. AR8 is structurally different from other known AR splice variants because it lacks a DNA binding domain and therefore, unlikely functions as a transcription factor on its own. Immunofluorescence staining revealed that AR8 was primarily localized on the plasma membrane, possibly through palmitoylation of two cysteine residues within its unique C-terminal sequence. Mutation of these putative palmitoylation sites in AR8 led to loss of its plasma membrane localization. In addition, we demonstrated that overexpression of AR8 in prostate cancer cells promoted association of Src and AR with the EGF receptor in response to EGF treatment and enhanced tyrosine phosphorylation of AR. Conversely, specific knockdown of AR8 expression in prostate cancer cells compromised EGF-induced Src activation and AR phosphorylation. This effect was accompanied with attenuation of proliferation and increased apoptosis in prostate cancer cells cultured in androgen-depleted medium. We also showed that AR8 was required for optimal transcriptional activity of AR in response to treatment of both androgen and EGF. Taken together, our results demonstrate that the membrane-associated AR8 isoform may contribute to castration resistance by potentiating AR-mediated proliferative and survival responses to hormones and growth factors

    Triple-Negative Breast Cancer Risk Genes Identified by Multigene Hereditary Cancer Panel Testing

    Get PDF
    Background: Germline genetic testing with hereditary cancer gene panels can identify women at increased risk of breast cancer. However, those at increased risk of triple-negative (estrogen receptor-negative, progesterone receptor-negative, human epidermal growth factor receptor-negative) breast cancer (TNBC) cannot be identified because predisposition genes for TNBC, other than BRCA1, have not been established. The aim of this study was to define the cancer panel genes associated with increased risk of TNBC. Methods: Multigene panel testing for 21 genes in 8753 TNBC patients was performed by a clinical testing laboratory, and testing for 17 genes in 2148 patients was conducted by a Triple Negative Breast Cancer Consortium(TNBCC) of research studies. Associations between deleterious mutations in cancer predisposition genes and TNBC were evaluated using results from TNBC patients and reference controls. Results: Germline pathogenic variants in BARD1, BRCA1, BRCA2, PALB2, and RAD51D were associated with high risk (odds ratio > 5.0) of TNBC and greater than 20% lifetime risk for overall breast cancer among Caucasians. Pathogenic variants in BRIP1, RAD51C, and TP53 were associated with moderate risk (odds ratio > 2) of TNBC. Similar trends were observed for the African American population. Pathogenic variants in these TNBC genes were detected in 12.0% (3.7% non-BRCA1/2) of all participants. Conclusions: Multigene hereditary cancer panel testing can identify women with elevated risk of TNBC due to mutations in BARD1, BRCA1, BRCA2, PALB2, and RAD51D. These women can potentially benefit from improved screening, risk management, and cancer prevention strategies. Patients with mutations may also benefit from specific targeted therapeutic strategies.Peer reviewe

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Triple-negative breast cancer risk genes identified by multigene hereditary cancer panel testing

    Get PDF
    Background Germline genetic testing with hereditary cancer gene panels can identify women at increased risk of breast cancer. However, those at increased risk of triple-negative (estrogen receptor–negative, progesterone receptor–negative, human epidermal growth factor receptor–negative) breast cancer (TNBC) cannot be identified because predisposition genes for TNBC, other than BRCA1, have not been established. The aim of this study was to define the cancer panel genes associated with increased risk of TNBC. Methods Multigene panel testing for 21 genes in 8753 TNBC patients was performed by a clinical testing laboratory, and testing for 17 genes in 2148 patients was conducted by a Triple Negative Breast Cancer Consortium (TNBCC) of research studies. Associations between deleterious mutations in cancer predisposition genes and TNBC were evaluated using results from TNBC patients and reference controls. Results Germline pathogenic variants in BARD1, BRCA1, BRCA2, PALB2, and RAD51D were associated with high risk (odds ratio > 5.0) of TNBC and greater than 20% lifetime risk for overall breast cancer among Caucasians. Pathogenic variants in BRIP1, RAD51C, and TP53 were associated with moderate risk (odds ratio > 2) of TNBC. Similar trends were observed for the African American population. Pathogenic variants in these TNBC genes were detected in 12.0% (3.7% non-BRCA1/2) of all participants. Conclusions Multigene hereditary cancer panel testing can identify women with elevated risk of TNBC due to mutations in BARD1, BRCA1, BRCA2, PALB2, and RAD51D. These women can potentially benefit from improved screening, risk management, and cancer prevention strategies. Patients with mutations may also benefit from specific targeted therapeutic strategies

    Clinical validity assessment of genes frequently tested on intellectual disability/autism sequencing panels.

    Full text link
    [en] PURPOSE: Neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and autism spectrum disorder (ASD), exhibit genetic and phenotypic heterogeneity, making them difficult to differentiate without a molecular diagnosis. The Clinical Genome Resource Intellectual Disability/Autism Gene Curation Expert Panel (GCEP) uses systematic curation to distinguish ID/ASD genes that are appropriate for clinical testing (ie, with substantial evidence supporting their relationship to disease) from those that are not. METHODS: Using the Clinical Genome Resource gene-disease validity curation framework, the ID/Autism GCEP classified genes frequently included on clinical ID/ASD testing panels as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. RESULTS: As of September 2021, 156 gene-disease pairs have been evaluated. Although most (75%) were determined to have definitive roles in NDDs, 22 (14%) genes evaluated had either Limited or Disputed evidence. Such genes are currently not recommended for use in clinical testing owing to the limited ability to assess the effect of identified variants. CONCLUSION: Our understanding of gene-disease relationships evolves over time; new relationships are discovered and previously-held conclusions may be questioned. Without periodic re-examination, inaccurate gene-disease claims may be perpetuated. The ID/Autism GCEP will continue to evaluate these claims to improve diagnosis and clinical care for NDDs

    Regulation of p27 (Kip1) by Ubiquitin E3 Ligase RNF6

    No full text
    The cyclin-dependent kinase inhibitor p27 (Kip1) is an important regulator of the G1/S checkpoint. It is degraded by the SCF-SKP2 complex in late G1 thereby allowing cells to progress to the S phase. Here we investigated the role of the E3 ubiquitin ligase RNF6 (Ring Finger Protein 6) in cell cycle progression in prostate cancer cells. Our data demonstrate that RNF6 can promote cell cycle progression by reducing the levels of p27. Knockdown of RNF6 led to an increase in the stability of p27 and to the arrest of cells in the G1 phase. RNF6 interacted with p27 via its KIL domain and this interaction was found to be phosphorylation independent. RNF6 enhanced ubiquitination and subsequent degradation of p27 in the early G0/G1 phase of the cell cycle. Knockdown of RNF6 expression by short hairpin RNA led to inhibition of the CDK2/Cyclin E complex thereby reducing phosphorylation of Retinoblastoma protein (Rb) and to a subsequent decrease in cell cycle progression and proliferation. Our data suggest that RNF6 acts as a negative regulator for p27kip1 leading to its proteasome-dependent degradation in the early G0/G1 phase of the cell cycle

    Male breast cancer in a multi-gene panel testing cohort: insights and unexpected results.

    No full text
    Genetic predisposition to male breast cancer (MBC) is not well understood. The aim of this study was to better define the predisposition genes contributing to MBC and the utility of germline multi-gene panel testing (MGPT) for explaining the etiology of MBCs.Clinical histories and molecular results were retrospectively reviewed for 715 MBC patients who underwent MGPT from March 2012 to June 2016.The detection rate of MGPT was 18.1% for patients tested for variants in 16 breast cancer susceptibility genes and with no prior BRCA1/2 testing. BRCA2 and CHEK2 were the most frequently mutated genes (11.0 and 4.1% of patients with no prior BRCA1/2 testing, respectively). Pathogenic variants in BRCA2 [odds ratio (OR) = 13.9; p = 1.92 × 10-16], CHEK2 (OR = 3.7; p = 6.24 × 10-24), and PALB2 (OR = 6.6, p = 0.01) were associated with significantly increased risks of MBC. The average age at diagnosis of MBC was similar for patients with (64 years) and without (62 years) pathogenic variants. CHEK2 1100delC carriers had a significantly lower average age of diagnosis (n = 7; 54 years) than all others with pathogenic variants (p = 0.03). No significant differences were observed between history of additional primary cancers (non-breast) and family history of male breast cancer for patients with and without pathogenic variants. However, patients with pathogenic variants in BRCA2 were more likely to have a history of multiple primary breast cancers.These data suggest that all MBC patients regardless of age of diagnosis, history of multiple primary cancers, or family history of MBC should be offered MGPT
    corecore