9 research outputs found
Shale adhesion force measurements via atomic force microscopy
Wettability of sedimentary rock surface is an essential parameter that defines oil recovery and production rates of a reservoir. The discovery of wettability alteration in reservoirs, as well as complications that occur in analysis of heterogeneous sample, such as shale, for instance, have prompted scientists to look for the methods of wettability assessment at nanoscale. At the same time, bulk techniques, which are commonly applied, such as USBM (United States Bureau of Mines) or Amott tests, are not sensitive enough in cases with mixed wettability of rocks as they provide average wettability values of a core plug. Atomic Force Microscopy (AFM) has been identified as one of the methods that allow for measurement of adhesion forces between cantilever and sample surface in an exact location at nanoscale. These adhesion forces can be used to estimate wettability locally. Current research, however, shows that the correlation is not trivial. Moreover, adhesion force measurement via AFM has not been used extensively in studies with geological samples yet. In this study, the adhesion force values of the cantilever tip interaction with quartz inclusion on the shale sample surface, have been measured using the AFM technique. The adhesion force measured in this particular case was equal to the capillary force of water meniscus, formed between the sample surface and the cantilever tip. Experiments were conducted with a SiconG cantilever with (tip radius of 5 nm). The adhesion forces between quartz grain and cantilever tip were equal to 56.5 ± 5 nN. Assuming the surface of interaction to be half spherical, the adhesion force per area was 0.36 ± 0.03 nN/nm2. These measurements and results acquired at nano-scale will thus create a path towards much higher accuracy-wettability measurements and consequently better reservoir-scale predictions and improved underground operations
The origin and fate of C during alteration of the oceanic crust
The contents and isotope compositions of water and carbon, including total, reduced, and inorganic (carbonate) C, were studied in 170 My altered oceanic basalts from Ocean Drilling Program Hole 801C in the western Pacific Ocean. Reduced C contents of 0.12–0.29 wt% CO2 and C values of to occur throughout the basement section. High total C concentrations in the upper volcanic section (UVS), above 300 m sub-basement, are dominated by inorganic C, and concentrations of both decrease with depth, from 1.92 to 0.57 wt% CO2 and 1.76 wt% CO2 to 0.66 wt% CO2, respectively. The C of inorganic C in the UVS (0.4 to ) indicates precipitation of seawater dissolved inorganic carbon (DIC) through the intensive circulation of seawater. D values of 59.8 to in the UVS also result from seawater interaction. In contrast, total C contents in the lower volcanic section (LVS) are low (0.22–0.39 wt% CO2) and dominated by reduced C, resulting in negative C values for total C (18.7 to ). We propose that a proportion of this reduced C could have formed through abiotic reduction of magmatic CO2 at the ridge axis. The contents and C values of inorganic carbon in the LVS (0.05–0.09 wt% CO2 and 10.7 to , respectively) fall in the range characteristic of C in mid-ocean ridge basalt glasses, also suggesting a magmatic origin. D values in the LVS (weighted average ) are consistent with magmatic water. Reduced C in the basalts may also have formed through microbial activity at low temperatures, as indicated by previous work showing negative S values in the basalts.Our results show: (1) that magmatic C can be stored in altered oceanic basalts both as reduced and inorganic C resulting from high-temperature processes at mid-ocean ridges; (2) that microbial activity may add reduced C to the basalts during low-temperature alteration on ridge flanks; and (3) that circulation of cold seawater in the uppermost few hundred meters of basement adds seawater DIC as carbonate to the basalts and filling fractures in the basement. We estimate the content of magmatic C stored in the altered basaltic crust to be 0.126 wt% CO2. Compared with previous estimates, this concentration probably represents an upper limit for magmatic C. This resultant magmatic C flux into the crust, ranging from – molCy is similar to the outgassing CO2 flux [– molCy, Le Voyer et al., 2019 and Cartigny et al., 2018, respectively]. Further data are needed to better constrain the fraction of magmatic CO2 that does not escape the oceanic lithosphere but remains stored as reduced and inorganic carbon
The origin and fate of C during alteration of the oceanic crust
The contents and isotope compositions of water and carbon, including total, reduced, and inorganic (carbonate) C, were studied in 170 My altered oceanic basalts from Ocean Drilling Program Hole 801C in the western Pacific Ocean. Reduced C contents of 0.12–0.29 wt% CO2 and C values of to occur throughout the basement section. High total C concentrations in the upper volcanic section (UVS), above 300 m sub-basement, are dominated by inorganic C, and concentrations of both decrease with depth, from 1.92 to 0.57 wt% CO2 and 1.76 wt% CO2 to 0.66 wt% CO2, respectively. The C of inorganic C in the UVS (0.4 to ) indicates precipitation of seawater dissolved inorganic carbon (DIC) through the intensive circulation of seawater. D values of 59.8 to in the UVS also result from seawater interaction. In contrast, total C contents in the lower volcanic section (LVS) are low (0.22–0.39 wt% CO2) and dominated by reduced C, resulting in negative C values for total C (18.7 to ). We propose that a proportion of this reduced C could have formed through abiotic reduction of magmatic CO2 at the ridge axis. The contents and C values of inorganic carbon in the LVS (0.05–0.09 wt% CO2 and 10.7 to , respectively) fall in the range characteristic of C in mid-ocean ridge basalt glasses, also suggesting a magmatic origin. D values in the LVS (weighted average ) are consistent with magmatic water. Reduced C in the basalts may also have formed through microbial activity at low temperatures, as indicated by previous work showing negative S values in the basalts.Our results show: (1) that magmatic C can be stored in altered oceanic basalts both as reduced and inorganic C resulting from high-temperature processes at mid-ocean ridges; (2) that microbial activity may add reduced C to the basalts during low-temperature alteration on ridge flanks; and (3) that circulation of cold seawater in the uppermost few hundred meters of basement adds seawater DIC as carbonate to the basalts and filling fractures in the basement. We estimate the content of magmatic C stored in the altered basaltic crust to be 0.126 wt% CO2. Compared with previous estimates, this concentration probably represents an upper limit for magmatic C. This resultant magmatic C flux into the crust, ranging from – molCy is similar to the outgassing CO2 flux [– molCy, Le Voyer et al., 2019 and Cartigny et al., 2018, respectively]. Further data are needed to better constrain the fraction of magmatic CO2 that does not escape the oceanic lithosphere but remains stored as reduced and inorganic carbon
Shale adhesion force measurements via atomic force microscopy
Wettability of sedimentary rock surface is an essential parameter that defines oil recovery and production rates of a reservoir. The discovery of wettability alteration in reservoirs, as well as complications that occur in analysis of heterogeneous sample, such as shale, for instance, have prompted scientists to look for the methods of wettability assessment at nanoscale. At the same time, bulk techniques, which are commonly applied, such as USBM (United States Bureau of Mines) or Amott tests, are not sensitive enough in cases with mixed wettability of rocks as they provide average wettability values of a core plug. Atomic Force Microscopy (AFM) has been identified as one of the methods that allow for measurement of adhesion forces between cantilever and sample surface in an exact location at nanoscale. These adhesion forces can be used to estimate wettability locally. Current research, however, shows that the correlation is not trivial. Moreover, adhesion force measurement via AFM has not been used extensively in studies with geological samples yet. In this study, the adhesion force values of the cantilever tip interaction with quartz inclusion on the shale sample surface, have been measured using the AFM technique. The adhesion force measured in this particular case was equal to the capillary force of water meniscus, formed between the sample surface and the cantilever tip. Experiments were conducted with a SiconG cantilever with (tip radius of 5 nm). The adhesion forces between quartz grain and cantilever tip were equal to 56.5 ± 5 nN. Assuming the surface of interaction to be half spherical, the adhesion force per area was 0.36 ± 0.03 nN/nm2. These measurements and results acquired at nano-scale will thus create a path towards much higher accuracy-wettability measurements and consequently better reservoir-scale predictions and improved underground operations
Control of CO2 on flow and reaction paths in olivine-dominated basements: An experimental study
International audienceThe objective of this paper is to quantify the mass transfers involved in the hydrothermal alteration of olivine-rich peridotites in the presence of CO2-enriched waters, and to determine their effects on the rock hydrodynamic properties. Three flow-through experiments were performed at a temperature of 185 °C and a total pressure of 22.5 ± 2.5 MPa. They consisted in injecting a hydrothermal fluid with different concentrations of carbon dioxide (CO2 = 6.26, 62.6 and 659.7 mmol·L−1 i.e. pCO2 = 0.1, 1 and 10 MPa, respectively) into cylinders of sintered San Carlos (Arizona, USA) olivine grains. The results show that for low pCO2 conditions (from 0.1 to 1 MPa), olivine is mainly altered into hematite and Mg(Fe)-rich phyllosilicates. Such iddingsitic-type assemblages may clog most of the rock flow paths, resulting in a strong decrease in permeability. Rare Ca-Fe-carbonate minerals also precipitated under these conditions despite the initial Mg-rich system. For higher pCO2 conditions (∼10 MPa), olivine is more efficiently altered. A greater amount of poorly crystallized Fe(Mg)-rich phyllosilicates and magnesite is produced, and the carbonation rate of olivine is 3–11 times higher than when the pCO2 is 10–100 times lower. Interestingly, the changes in porosity caused by the formation of carbonated and hydrous minerals are small while a strong decrease in permeability is measured during the experiments. The formation of reduced carbon is also observed. It is located preferentially at the inlet, where pH is the lowest. This testifies to a competition between reduction (probably associated with the oxidation of ferrous iron) and carbonation; two processes involved in the fixation of CO2 in a mineral form. One may speculate that the formation of reduced carbon can also be a significant mechanism of CO2 sequestration in olivine-dominated basements
Recommended from our members
Previously unknown class of metalorganic compounds revealed in meteorites
The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]-, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies
Previously unknown class of metalorganic compounds revealed in meteorites
International audienceThe rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)(2)MgO2CR](-), in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies