1,007 research outputs found

    Growth factor-mediated phosphorylation of proapoptotic BAD reduces tubule cell death in vitro and in vivo

    Get PDF
    Growth factor-mediated phosphorylation of proapoptotic BAD reduces tubule cell death in vitro and in vivo.BackgroundExogenous growth factors administered during unilateral ureteral obstruction (UUO) in neonatal rats significantly reduce apoptosis and tubular atrophy. Because the mechanism underlying these salutary effects is largely unknown, we investigated signaling pathways potentially activated by growth factors to determine their roles in therapeutic action.MethodsMechanical strain was applied to confluent cultures of immortalized rat proximal tubule cells to simulate obstruction-induced stretch injury in vivo. Growth factors, inhibitory antibodies or pharmacological inhibitors were added to cultures that were subsequently processed for TUNEL analysis or immunoblots to identify signaling pathways that could be modulating cell survival. For in vivo studies, kidneys harvested from rats ± UUO ± epidermal growth factor (EGF) were fixed or frozen for immunohistochemistry or immunoblot analysis.ResultsTreatment with EGF or insulin-like growth factor-1 (IGF-1) during stretch decreased apoptosis by 50% (P < 0.001). Neutralizing antibodies (Abs) directed against either growth factor or its receptor blocked the reduction in apoptosis. Stretch decreased BAD phosphorylation by ∼50% (P < 0.001) relative to unstretched cells and each growth factor restored phosphorylation to basal levels. Kinase-specific inhibitors that blocked growth factor-mediated BAD phosphorylation promoted apoptosis in vitro. BAD phosphorylation decreased by ∼50% (P < 0.001) in the tubules of obstructed hydronephrotic rat kidneys and administration of EGF restored BAD phosphorylation to basal levels.ConclusionsSignaling pathways converging at BAD phosphorylation are key to growth factor-mediated attenuation of stretch-induced apoptosis in vitro and in vivo

    Solution Structure of a CUE-Ubiquitin Complex Reveals a Conserved Mode of Ubiquitin Binding

    Get PDF
    AbstractMonoubiquitination serves as a regulatory signal in a variety of cellular processes. Monoubiquitin signals are transmitted by binding to a small but rapidly expanding class of ubiquitin binding motifs. Several of these motifs, including the CUE domain, also promote intramolecular monoubiquitination. The solution structure of a CUE domain of the yeast Cue2 protein in complex with ubiquitin reveals intermolecular interactions involving conserved hydrophobic surfaces, including the Leu8-Ile44-Val70 patch on ubiquitin. The contact surface extends beyond this patch and encompasses Lys48, a site of polyubiquitin chain formation. This suggests an occlusion mechanism for inhibiting polyubiquitin chain formation during monoubiquitin signaling. The CUE domain shares a similar overall architecture with the UBA domain, which also contains a conserved hydrophobic patch. Comparative modeling suggests that the UBA domain interacts analogously with ubiquitin. The structure of the CUE-ubiquitin complex may thus serve as a paradigm for ubiquitin recognition and signaling by ubiquitin binding proteins

    Methods for the sampling and analysis of marine aerosols: results from the 2008 GEOTRACES aerosol intercalibration experiment

    Get PDF
    Atmospheric deposition of trace elements and isotopes (TEI) is an important source of trace metals to the open ocean, impacting TEI budgets and distributions, stimulating oceanic primary productivity, and influencing biological community structure and function. Thus, accurate sampling of aerosol TEIs is a vital component of ongoing GEOTRACES cruises, and standardized aerosol TEI sampling and analysis procedures allow the comparison of data from different sites and investigators. Here, we report the results of an aerosol analysis intercalibration study by seventeen laboratories for select GEOTRACES-relevant aerosol species (Al, Fe, Ti, V, Zn, Pb, Hg, NO3-, and SO42-) for samples collected in September 2008. The collection equipment and filter substrates are appropriate for the GEOTRACES program, as evidenced by low blanks and detection limits relative to analyte concentrations. Analysis of bulk aerosol sample replicates were in better agreement when the processing protocol was constrained (+/- 9% RSD or better on replicate analyses by a single lab, n = 7) than when it was not (generally 20% RSD or worse among laboratories using different methodologies), suggesting that the observed variability was mainly due to methodological differences rather than sample heterogeneity. Much greater variability was observed for fractional solubility of aerosol trace elements and major anions, due to differing extraction methods. Accuracy is difficult to establish without an SRM representative of aerosols, and we are developing an SRM for this purpose. Based on these findings, we provide recommendations for the GEOTRACES program to and macro-nutrients to the open ocean (Okin et al. 2011) and is a key component of the international GEOTRACES program (GEOTRACES Planning Group 2006). A priority of the GEOTRACES program is to quantify both major and trace elements (e. g., Al, Fe, Ti, V, Zn, Pb, and Hg) and species such as nitrate and sulfate in marine aerosols. Therefore, marine aerosol samples collected during GEOTRACES cruises must follow sampling protocols that permit the collection and analysis of as many elements and compounds as possible, while meeting the constraints associated with basin-wide oceanographic cruises (e. g., space limitations, high-frequency sampling, etc.)

    Structural and Functional Similarities between Osmotin from Nicotiana Tabacum Seeds and Human Adiponectin

    Get PDF
    Osmotin, a plant protein, specifically binds a seven transmembrane domain receptor-like protein to exert its biological activity via a RAS2/cAMP signaling pathway. The receptor protein is encoded in the gene ORE20/PHO36 and the mammalian homolog of PHO36 is a receptor for the human hormone adiponectin (ADIPOR1). Moreover it is known that the osmotin domain I can be overlapped to the β-barrel domain of adiponectin. Therefore, these observations and some already existing structural and biological data open a window on a possible use of the osmotin or of its derivative as adiponectin agonist. We have modelled the three-dimensional structure of the adiponectin trimer (ADIPOQ), and two ADIPOR1 and PHO36 receptors. Moreover, we have also modelled the following complexes: ADIPOQ/ADIPOR1, osmotin/PHO36 and osmotin/ADIPOR1. We have then shown the structural determinants of these interactions and their physico-chemical features and analyzed the related interaction residues involved in the formation of the complexes. The stability of the modelled structures and their complexes was always evaluated and controlled by molecular dynamics. On the basis of these results a 9 residues osmotin peptide was selected and its interaction with ADIPOR1 and PHO36 was modelled and analysed in term of energetic stability by molecular dynamics. To confirm in vivo the molecular modelling data, osmotin has been purified from nicotiana tabacum seeds and its nine residues peptide synthesized. We have used cultured human synovial fibroblasts that respond to adiponectin by increasing the expression of IL-6, TNF-alpha and IL-1beta via ADIPOR1. The biological effect on fibroblasts of osmotin and its peptide derivative has been found similar to that of adiponectin confirming the results found in silico

    Developmental Regulation of Hepatitis B Virus Biosynthesis by Hepatocyte Nuclear Factor 4α

    Get PDF
    The host cellular factors that promote persistent viral infections in vivo are, in general, poorly understood. Utilizing the hepatitis B virus (HBV) transgenic mouse model of chronic infection, we demonstrate that the nuclear receptor, hepatocyte nuclear factor 4α (HNF4α, NR2A1), is essential for viral biosynthesis in the liver. The dependency of HBV transcription on HNF4α links viral biosynthesis and persistence to a developmentally regulated transcription factor essential for host viability

    Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis

    Get PDF
    Background Cyclin-dependent protein kinase-5 (CDK5) is an unusual member of the CDK family as it is not cell cycle regulated. However many of its substrates have roles in cell growth and oncogenesis, raising the possibility that CDK5 modulation could have therapeutic benefit. In order to establish whether changes in CDK5 activity are associated with oncogenesis one could quantify phosphorylation of CDK5 targets in disease tissue in comparison to appropriate controls. However the identity of physiological and pathophysiological CDK5 substrates remains the subject of debate, making the choice of CDK5 activity biomarkers difficult. Methods Here we use in vitro and in cell phosphorylation assays to identify novel features of CDK5 target sequence determinants that confer enhanced CDK5 selectivity, providing means to select substrate biomarkers of CDK5 activity with more confidence. We then characterize tools for the best CDK5 substrate we identified to monitor its phosphorylation in human tissue and use these to interrogate human tumour arrays. Results The close proximity of Arg/Lys amino acids and a proline two residues N-terminal to the phosphorylated residue both improve recognition of the substrate by CDK5. In contrast the presence of a proline two residues C-terminal to the target residue dramatically reduces phosphorylation rate. Serine-522 of Collapsin Response Mediator-2 (CRMP2) is a validated CDK5 substrate with many of these structural criteria. We generate and characterise phosphospecific antibodies to Ser522 and show that phosphorylation appears in human tumours (lung, breast, and lymphoma) in stark contrast to surrounding non-neoplastic tissue. In lung cancer the anti-phospho-Ser522 signal is positive in squamous cell carcinoma more frequently than adenocarcinoma. Finally we demonstrate that it is a specific and unusual splice variant of CRMP2 (CRMP2A) that is phosphorylated in tumour cells. Conclusions For the first time this data associates altered CDK5 substrate phosphorylation with oncogenesis in some but not all tumour types, implicating altered CDK5 activity in aspects of pathogenesis. These data identify a novel oncogenic mechanism where CDK5 activation induces CRMP2A phosphorylation in the nuclei of tumour cells

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    • …
    corecore