354 research outputs found

    Idiopathic Lesions and Visual Deficits in the American Lobster (Homarus americanus) From Long Island Sound, NY

    Get PDF
    In 1999, a mass mortality of the American lobster (Homarus americanus) occurred in western Long Island Sound (WLIS). Although the etiology of this event remains unknown, bottom water temperature, hypoxia, heavy metal poisoning, and pesticides are potential causal factors. Lobsters from WLIS continue to display signs of morbidity, including lethargy and cloudy grey eyes that contain idiopathic lesions. As the effect of these lesions on lobster vision is unknown, we used electroretinography (ERG) to document changes in visual function in lobsters from WLIS, while using histology to quantify the extent of physical damage. Seventy-three percent of lobsters from WLIS showed damage to photoreceptors and optic nerve fibers, including necrosis, cellular breakdown, and hemocyte infiltration in the optic nerves, rhabdoms, and ommatidia. Animals with more than 15% of their photoreceptors exhibiting damage also displayed markedly reduced responses to 10-ms flashes of a broad-spectrum white light. Specifically, maximum voltage (Vmax) responses were significantly lower and occurred at a lower light intensity compared to responses from lobsters lacking idiopathic lesions. Nearly a decade after the 1999 mortality event, lobsters from WLIS still appear to be subjected to a stressor of unknown etiology that causes significant functional damage to the eyes

    Investigating the clinical use of structured light plethysmography to assess lung function in children with neuromuscular disorders

    Get PDF
    BackgroundChildren and young people with neuromuscular disorders (NMD), such as Duchenne Muscular Dystrophy (DMD), develop progressive respiratory muscles weakness and pulmonary restriction. Pulmonary function monitoring of the decline in lung function allows for timely intervention with cough assist techniques and nocturnal non-invasive ventilation (NIV). NMD may find the measurement of lung function difficult using current techniques. Structured Light Plethysmography (SLP) has been proposed as a novel, non-contact, self-calibrating, non-invasive method of assessing lung function. The overarching aim of this study was to investigate the use of SLP as a novel method for monitoring respiratory function in children with neuromuscular disease.MethodsSLP thoraco-abdominal (TA) displacement was correlated with forced vital capacity measurements recorded by spirometry and the repeatability of the measurements with both methods examined. SLP tidal breathing parameters were investigated to assess the range and repeatability of regional right and left side TA displacement and rib cage and abdominal wall displacement.ResultsThe comparison of the FVC measured with SLP and with spirometry, while having good correlation (R = 0.78) had poor measurement agreement (95% limits of agreement: -1.2 to 1.2L) The mean relative contribution of right and left TA displacement in healthy controls was 50:50 with a narrow range. Repeatability of this measure with SLP was found to be good in healthy controls and moderate in NMD children with/without scoliosis but with a wider range. The majority of the control group displayed a predominant rib cage displacement during tidal breathing and those who displayed predominant abdominal wall displacement showed displacement of both regions close to 50:50 with similar results for the rib cage and abdomen. In comparison, children with NMD have a more variable contribution for all of these parameters. In addition, SLP was able to detect a reduction in abdominal contribution to TA displacement with age in the DMD group and detect paradoxical breathing in children with NMD. Using SLP tracings during tidal breathing we were able to identify three specific patterns of breathing amongst healthy individuals and in children with NMD.ConclusionsSLP is a novel method for measuring lung function that requires limited patient cooperation and may be especially useful in children with neuromuscular disorders. Measuring the relative contributions of the right and left chest wall and chest versus abdominal movements allows a more detailed assessment

    Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice

    Get PDF
    Locomotor function, mediated by lumbar neural circuitry, is modulated by descending spinal pathways. Spinal cord injury (SCI) interrupts descending projections and denervates lumbar motor neurons (MNs). We previously reported that retrogradely transported neurotrophin-3 (NT-3) to lumbar MNs attenuated SCI-induced lumbar MN dendritic atrophy and enabled functional recovery after a rostral thoracic contusion. Here we functionally dissected the role of descending neural pathways in response to NT-3-mediated recovery after a T9 contusive SCI in mice. We find that residual projections to lumbar MNs are required to produce leg movements after SCI. Next, we show that the spared descending propriospinal pathway, rather than other pathways (including the corticospinal, rubrospinal, serotonergic, and dopaminergic pathways), accounts for NT-3-enhanced recovery. Lastly, we show that NT-3 induced propriospino-MN circuit reorganization after the T9 contusion via promotion of dendritic regrowth rather than prevention of dendritic atrophy

    Reasons to Be Skeptical about Sentience and Pain in Fishes and Aquatic Invertebrates

    Get PDF
    The welfare of fishes and aquatic invertebrates is important, and several jurisdictions have included these taxa under welfare regulation in recent years. Regulation of welfare requires use of scientifically validated welfare criteria. This is why applying Mertonian skepticism toward claims for sentience and pain in fishes and aquatic invertebrates is scientifically sound and prudent, particularly when those claims are used to justify legislation regulating the welfare of these taxa. Enacting welfare legislation for these taxa without strong scientific evidence is a societal and political choice that risks creating scientific and interpretational problems as well as major policy challenges, including the potential to generate significant unintended consequences. In contrast, a more rigorous science-based approach to the welfare of aquatic organisms that is based on verified, validated and measurable endpoints is more likely to result in “win-win” scenarios that minimize the risk of unintended negative impacts for all stakeholders, including fish and aquatic invertebrates. The authors identify as supporters of animal welfare, and emphasize that this issue is not about choosing between welfare and no welfare for fish and aquatic invertebrates, but rather to ensure that important decisions about their welfare are based on scientifically robust evidence. These ten reasons are delivered in the spirit of organized skepticism to orient legislators, decision makers and the scientific community, and alert them to the need to maintain a high scientific evidential bar for any operational welfare indicators used for aquatic animals, particularly those mandated by legislation. Moving forward, maintaining the highest scientific standards is vitally important, in order to protect not only aquatic animal welfare, but also global food security and the welfare of humans

    Berkeley Supernova Ia Program I: Observations, Data Reduction, and Spectroscopic Sample of 582 Low-Redshift Type Ia Supernovae

    Get PDF
    In this first paper in a series we present 1298 low-redshift (z\leq0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 through 2008 as part of the Berkeley SN Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have a typical wavelength range of 3300-10,400 Ang., roughly twice as wide as spectra from most previously published datasets. We present our observing and reduction procedures, and we describe the resulting SN Database (SNDB), which will be an online, public, searchable database containing all of our fully reduced spectra and companion photometry. In addition, we discuss our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry 2007), utilising our newly constructed set of SNID spectral templates. These templates allow us to accurately classify our entire dataset, and by doing so we are able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, our dataset includes spectra of nearly 90 spectroscopically peculiar SNe Ia. We also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. [Abridged]Comment: 34 pages, 11 figures, 11 tables, revised version, re-submitted to MNRAS. Spectra will be released in January 2013. The SN Database homepage (http://hercules.berkeley.edu/database/index_public.html) contains the full tables, plots of all spectra, and our new SNID template

    Their Day in Court: Assessing Guilty Plea Rates Among Terrorists

    Get PDF
    Individuals who are charged for traditional crimes are substantially more likely to plead guilty than individuals who are charged under the same statutes but who are officially involved in terrorism (Smith & Damphousse, 1998). Relying on a structural–contextual theory framework, a quantitative analysis not only confirmed that terrorists plead guilty more often than traditional offenders but that the defendant’s age and number of counts in the indictment are important predictors. Directions for future research are suggested.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    A Meta-Regression Analysis to Evaluate the Effects of Narasin on Grow-Finish Pig Performance

    Get PDF
    A meta-regression analysis was conducted to evaluate the effects of added narasin in growing-finishing pig diets to predict the influence on average daily gain (ADG), feed efficiency (G:F), and carcass yield. A database was developed containing 21 technical reports, abstracts, and refereed papers from 2012 to 2021 representing 35 observations for growth performance data in studies ranging from 35 to 116 days in length (overall data). In addition, within these 35 observations, individual period data were evaluated (143 observations) using weekly, bi-weekly, or monthly performance intervals (period data). Regression model equations were developed, and predictor variables were assessed with a stepwise manual forward selection procedure. Important variables in predicting the response to added narasin included ADG, average daily feed intake (ADFI), and G:F of the control pigs, feeding duration (shorter or longer than 65 days) and body weight (greater than or less than 230 lb). Using median values from the database for predictor variables, the meta-analysis indicated narasin would be expected to improve ADG between 1.06 to 1.65%, G:F between 0.71 to 1.71%, and carcass yield by 0.31% when fed for longer than 65 days

    Small extracellular vesicle-mediated ITGB6 siRNA delivery downregulates the αVβ6 integrin and inhibits adhesion and migration of recipient prostate cancer cells

    Get PDF
    The αVβ6 integrin, an epithelial-specific cell surface receptor absent in normal prostate and expressed during prostate cancer (PrCa) progression, is a therapeutic target in many cancers. Here, we report that transcript levels of ITGB6 (encoding the β6 integrin subunit) are significantly increased in metastatic castrate-resistant androgen receptor-negative prostate tumors compared to androgen receptor-positive prostate tumors. In addition, the αVβ6 integrin protein levels are significantly elevated in androgen receptor-negative PrCa patient derived xenografts (PDXs) compared to androgen receptor-positive PDXs. In vitro, the androgen receptor-negative PrCa cells express high levels of the αVβ6 integrin compared to androgen receptor-positive PrCa cells. Additionally, expression of androgen receptor (wild type or variant 7) in androgen receptor-negative PrCa cells downregulates the expression of the β6 but not αV subunit compared to control cells. We demonstrate an efficient strategy to therapeutically target the αVβ6 integrin during PrCa progression by using short interfering RNA (siRNA) loaded into PrCa cell-derived small extracellular vesicles (sEVs). We first demonstrate that fluorescently-labeled siRNAs can be efficiently loaded into PrCa cell-derived sEVs by electroporation. By confocal microscopy, we show efficient internalization of these siRNA-loaded sEVs into PrCa cells. We show that sEV-mediated delivery of ITGB6-targeting siRNAs into PC3 cells specifically downregulates expression of the β6 subunit. Furthermore, treatment with sEVs encapsulating ITGB6 siRNA significantly reduces cell adhesion and migration of PrCa cells on an αVβ6-specific substrate, LAP-TGFβ1. Our results demonstrate an approach for specific targeting of the αVβ6 integrin in PrCa cells using sEVs encapsulating ITGB6-specific siRNAs
    corecore