1,631 research outputs found

    Optimization the initial weights of artificial neural networks via genetic algorithm applied to hip bone fracture prediction

    Get PDF
    This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs) by using genetic algorithms (GA). The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors (i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate) for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer) ANNs models with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC) was used to assess the performance of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858±0.00493 on modeling data and 0.802 ± 0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559, resp.). Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial neural networks.This research was supported by the National Science Council (NSC) of Taiwan (Grant no. NSC98-2915-I-155-005), the Department of Education grant of Excellent Teaching Program of Yuan Ze University (Grant no. 217517) and the Center for Dynamical Biomarkers and Translational Medicine supported by National Science Council (Grant no. NSC 100- 2911-I-008-001)

    Measuring and analysing vibration motors in insoles via accelerometers

    Get PDF
    Purpose: Falling is a major public health concern among elderly people, and they often cause serious injuries1,2. They most frequently occur during walking and are associated with the chronic deterioration in the neuromuscular and sensory systems, as well as with ankle muscle weakness and lower endurance of these muscles to fatigue1,3. Vibrating insoles, providing a subsensory mechanical noise signal to the plantar side of the feet, may improve balance in healthy young and older people and in patients with stroke or diabetic neuropathy4. The object of this study is to find the most suitable vibrator to put into the insole which can effectively improve the balance control of the elderlies. Method: We choose three different vibration actuators (micro vibration motor, brushless motor and eccentric motor) with two different weights on the insole. First, we put three same motors and two accelerometers on the insole, as shown in Figure1, then attach another layer on both side of the insole. Second, connect the motors to the power supply and the accelerometer to NI PXI-1033 spectrum analyzer which is used to collect the accelerometers' data. At last, using Fast Fourier Transform (FFT) to analyze and compare the results to see which motor is the most stable and suitable to put into the insole. Results & Discussion: The results showed that the most stable one is the brushless motor. The reason why the frequency is stable is that the relationship between voltage and frequency is linear, and the error is small through continuous measurements. On the other hand, when a person weight 55 kg stands on the insole, the frequency isn't affected by the weight. These two results appear very similar to each other, as shown in Figure 2. According to the result, we use the brushless motor to be our vibrator in the insole, and hope this will help the elderlies improve their balance control ability more efficiency

    Cold Nuclear Matter In Holographic QCD

    Full text link
    We study the Sakai-Sugimoto model of holographic QCD at zero temperature and finite chemical potential. We find that as the baryon chemical potential is increased above a critical value, there is a phase transition to a nuclear matter phase characterized by a condensate of instantons on the probe D-branes in the string theory dual. As a result of electrostatic interactions between the instantons, this condensate expands towards the UV when the chemical potential is increased, giving a holographic version of the expansion of the Fermi surface. We argue based on properties of instantons that the nuclear matter phase is necessarily inhomogeneous to arbitrarily high density. This suggests an explanation of the "chiral density wave" instability of the quark Fermi surface in large N_c QCD at asymptotically large chemical potential. We study properties of the nuclear matter phase as a function of chemical potential beyond the transition and argue in particular that the model can be used to make a semi-quantitative prediction of the binding energy per nucleon for nuclear matter in ordinary QCD.Comment: 31 pages, LaTeX, 1 figure, v2: some formulae corrected, qualitative results unchange

    Pressure-induced valence anomaly in TmTe probed by resonant inelastic x-ray scattering

    Get PDF
    The pressure-induced valence transition in TmTe was investigated by resonant inelastic x-ray scattering at the Tm L(3) edge, a powerful probe of the rare-earth valent state. The data are analyzed within the Anderson impurity model which yields key parameters such as the Tm 4f-5d hybridization. In addition to the general tendency of the f electrons towards delocalization, we find a plateau in both the Tm valence and hybridization pressure dependences between 4.3 and 6.5 GPa which is interpreted in terms of an n-channel Kondo (NCK) screening process. This behavior is at odds with the usually continuous, single-channel Kondo-like f delocalization while being supported by the seminal calculations of the NCK temperature in Tm ion by Saso et al. Our study raises the interesting possibility that an NCK effect realized in a compressed mixed-valent f system could impede the concomitant electron delocalization

    Genetic Deep Convolutional Autoencoder Applied for Generative Continuous Arterial Blood Pressure via Photoplethysmography

    Get PDF
    Hypertension affects huge number of people around the world. It also has a great contribution to cardiovascular and renal related diseases. This study investigates the ability deep convolutional autoencoder (DCAE) to generate the continuous arterial blood pressure (ABP) by only utilizing the photoplethysmography (PPG) to generate the continuous ABP. The total of 18 patients is utilized. LeNet-5 and U-Net based DCAEs, respectively for LDCAE and UDCAE, are compared to the MP60 IntelliVue Patient Monitor, as the golden standard. Moreover, in order to investigate the data generalization, leave-one-out cross-validation (CV) method is conducted. The results show that the UDCAE provides superior results in producing the SBP estimation. Meanwhile, LDCAE gives a slightly better for the DBP prediction. Finally, the genetic algorithm (GA) based optimization deep convolutional autoencoder (GDCAE) is further administered to optimize the ensemble of the CV models. The results reveal that the GDCAE is superior to either the LDCAE or UDCAE. For conclusion, this study reveals that the SBP and DBP can also be accurately achieved by only utilizing the single PPG signal

    Coherent bremsstrahlung, boherent pair production, birefringence and polarimetry in the 20-170 GeV energy range using aligned crystals

    Get PDF
    The processes of coherent bremsstrahlung (CB) and coherent pair production (CPP) based on aligned crystal targets have been studied in the energy range 20-170 GeV. The experimental arrangement allowed for measurements of single photon properties of these phenomena including their polarization dependences. This is significant as the theoretical description of CB and CPP is an area of active theoretical debate and development. With the theoretical approach used in this paper both the measured cross sections and polarization observables are predicted very well. This indicates a proper understanding of CB and CPP up to energies of 170 GeV. Birefringence in CPP on aligned crystals is applied to determine the polarization parameters in our measurements. New technologies for high energy photon beam optics including phase plates and polarimeters for linear and circular polarization are demonstrated in this experiment. Coherent bremsstrahlung for the strings-on-strings (SOS) orientation yields a larger enhancement for hard photons than CB for the channeling orientations of the crystal. Our measurements and our calculations indicate low photon polarizations for the high energy SOS photons.Comment: 23 pages, 27 figures, 2 tables, REVTeX4 two column

    Selective N,N-Dibenzylation of primary aliphatic amines with dibenzylcarbonate in the presence of phosphonium salts

    Get PDF
    In the presence of catalytic amounts of tetraalkylphosphonium salts and under solventless conditions, primary aliphatic amines (RNH2: R ) PhCH2, Ph(CH2)2, n-decyl, and 1-naphthylmethyl) are efficiently N-benzylated to the corresponding RN(CH2Ph)2, using dibenzyl carbonate as the benzylating reagent. Compared to the reaction run without salt, where the competitive formation of the benzyl carbamate is favored, the phosphonium salt promotes high selectivity toward the benzylated amine and an increase of the reaction rate as well. However, in a single case explored for an amino acidic compound, namely 4-(aminomethyl)benzoic acid [4-(NH2CH2)C6H4CO2H], both N,N-dibenzylation and esterification of the acid group were observed. Analysis of the IR vibrational modes of benzylamine in the presence of tetrabutylphosphonium bromide supports the hypothesis that this enhanced selectivity may be due to an acid-base interaction between the salt and the amine, which increases the steric bulk of the amine and favors attack of the nucleophile on the less hindered alkyl terminus of dibenzyl carbonate
    • 

    corecore