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This paper aims to find the optimal set of initial weights to enhance the accuracy of artificial neural networks (ANNs) by using
genetic algorithms (GA). The sample in this study included 228 patients with first low-trauma hip fracture and 215 patients
without hip fracture, both of them were interviewed with 78 questions. We used logistic regression to select 5 important factors
(i.e., bone mineral density, experience of fracture, average hand grip strength, intake of coffee, and peak expiratory flow rate)
for building artificial neural networks to predict the probabilities of hip fractures. Three-layer (one hidden layer) ANNs models
with back-propagation training algorithms were adopted. The purpose in this paper is to find the optimal initial weights of neural
networks via genetic algorithm to improve the predictability. Area under the ROC curve (AUC) was used to assess the performance
of neural networks. The study results showed the genetic algorithm obtained an AUC of 0.858 ± 0.00493 on modeling data and
0.802±0.03318 on testing data. They were slightly better than the results of our previous study (0.868±0.00387 and 0.796±0.02559,
resp.). Thus, the preliminary study for only using simple GA has been proved to be effective for improving the accuracy of artificial
neural networks.

1. Introduction

With increment of the life expectancy among the world,
osteoporosis becomes more and more prevalent and may
lead to disastrous pathological fractures. For the year 2000,
there were an estimated 9 million new osteoporotic fractures,
1.6 million at the hip, 1.7 million at the forearm, and 1.4
million at the vertebrae. Europe and the Americas accounted
for 51% of these osteoporotic fractures, while most of the
remainder occurred in the Western Pacific region and South-
east Asia [1]. Hip fractures cause the most morbidity with a
reported mortality rate up to 20–24% in the first year after
a hip fracture [2, 3], and greater risk of dying may persist
for at least 5 years afterwards [4]. Hip fractures are invari-
ably associated with severe chronic pain, reduced mobility,

disability, and an increasing degree of dependence [5]; even
if the patients survive after the incidence, some of them
still suffer its subsequent complications [6]. Furthermore,
the patients have to shoulder the huge health and economic
burdens that caused a high health care expenditure.

In order to reduce the occurrence of this preventable
injury and its subsequent complication, we expected to find
out the risk factors that are important for fracture prevention
and health promotion and then build a predictor for the
probability of hip bone fracture. Recently, support vector
machines (SVMs) have been applied in machine learning
techniques and are state-of-the-art machine learning tech-
niques for risk minimization [7]. Since their invention,
research on SVMs has exploded both in theory and appli-
cations. In practice, SVMs have been successfully applied to
many real-world domains [8, 9]. However, in dealing with
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highly nonlinear and complex system like hip fracture, artifi-
cial neural network (ANN) is still better than SVMs because
so many hidden layers, nodes, and parameters (e.g., learning
constant, learning algorithms, initial weights, etc.) can be
adjusted in ANN. Also, in previous study [10], although
many potential risk factors for hip fracture have been
identified, these risk factors may vary geographically and
combined effects of different risk factors have not been
well understood. Then, they established the artificial neural
network (ANN) to predict the risk of hip bone fracture ac-
cording to the advantages of nonlinearity, fault tolerance,
universality, and real-time operation.

ANNs are computer programs that simulate some of the
higher level functions of the human brain. There are neurons
and synapses in the brain, with various synaptic con-
nection strengths—called “weights”—between the con-
nected neuron pairs. The so-called input and output neurons
for each problem correspond to the inputs and to outputs
from a traditional computer program. The other, called
“hidden” neurons, along with the synapses and weights,
comes between the input and output neurons corresponding
to the instructions in a traditional program. Use of ANNs as
clinical prediction models has been explored in many
areas of medicine, including nephrology, and microbiology,
radiology, neurology.

Backpropagation is a topology of artificial neural net-
work; it adjusts the network’s weights and biases by calculat-
ing the gradient of the error. Usually, backpropagation neural
networks are applied with random initial weight setting
because of symmetry breaking [11]. However, training the
neural networks with random initial weights may cause two
main drawbacks: trapping into local minima and converging
slowly [11, 12]. In view of these limitations of back-propa-
gation neural networks, global search techniques (e.g.,
genetic algorithm and particle swarm optimization) have
been presented to overcome these shortcomings [13, 14]. So
far a number of works compare the evaluation between back-
propagation neural network and genetic algorithm for train-
ing neural networks [15, 16], both of them are techniques for
optimization and learning.

Genetic algorithms (GAs) developed to mimic some of
the processes observed in natural evolution are a class of
global search algorithms techniques. They have been shown
in practice to be very effective at function optimization,
and searching large or complex (multimodal, discontinuous,
etc.) spaces to find nearly global optimum efficiently [11].
Therefore, this study tried to find the optimal initial weights
of artificial neural network via genetic algorithm so that the
predictor could enhance the ability of predicting the risk of
hip bone fracture.

This paper is arranged as follows. Section 2 gives an
overview of artificial neural networks and genetic algorithm.
The materials and the artificial neural network prediction
model are used in Section 3. In Section 4, the proposed ge-
netic algorithm model is explained. Results and discussion
are in Section 5. Conclusions and future work are in
Section 6.

∑
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Figure 1: The diagram of one neuron.

2. An Overview of Neural Networks and
Genetic Algorithm

2.1. Artificial Neural Networks. Artificial neural networks
are a system that emulates the process of biological neural
networks. Artificial neural networks generally consist of five
components.

(1) The directed graph of the ANN topology.

(2) A state variable associated with each neuron.

(3) A real-valued weight associated with each link.

(4) A real-valued bias associated with each neuron.

(5) The output of each neuron f (
∑
wixi−b), which is the

input for next layer, where f is the transfer function,
wi are the weights connected with each neuron at the
last layer, xi are the input values of the neurons, and
b is the bias of the neuron (Figure 1).

Artificial neural networks have become very popular for
a few reasons. Firstly, they have the capability of learning
what adjusts the weights and biases between the nodes. If the
prediction is correct, the weights of the connections will be
increased and vice versa [17]. Secondly, artificial neural net-
works are a parallel system that can deal with missing data
that the linear program cannot deal with. Thirdly, with
multiple layers, artificial neural networks can process non-
linearity even though the relationships between multifactor
variables have not been exactly understood.

Feedforward network is one of the artificial neural net-
work topologies. It usually consists of multiple layers, and the
information will just be communicated to the next layer (i.e.,
output nodes have no arcs away from them). By different
tactics for modifying the weights in training networks, some
types of feedforward are presented such as back-propagation
neural network. Back-propagation neural network is one that
calculates the gradient of the error and then propagates error
backward through the network to modify the weights and
biases.

2.2. Genetic Algorithm. Genetic algorithms are developed to
mimic some of the processes inspired by natural evolution.
There are five components that we should define first [18,
19]:

(1) a way of coding solution to the problem on chromo-
somes;
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(2) a fitness function which returns a value for each
chromosome given to it;

(3) a way of initializing the population of chromosomes;

(4) operators that may be applied to parents when they
reproduce to alter their genetic composition standard
operators are mutation and crossover;

(5) parameter settings for the algorithm, the operators,
and so forth.

With these definitions, genetic algorithm operates in the fol-
lowing steps.

(1) Encode the problem in a string and generate the ini-
tial population using initialization procedure.

(2) Reckon the fitness value for each chromosome. It will
directly react on the distance to the optimum.

(3) Reproduce until a stopping criterion is met; repro-
duction consists of iterations of the following steps.

(a) Choose a number of parents to reproduce; se-
lection is stochastic, but the individuals with the
highest evaluations are favored in the selection.

(b) Apply the genetic algorithms (e.g., crossover,
mutation) to the parents.

(c) Accumulate the children and evaluate the fit-
ness value. Insert children into the population
to replace worse individuals of the current
population.

In genetic algorithm, fitness function will evaluate the
adaptation of each individual; it is a key point to decide if the
outcome is good or not. Selection operator will choose adap-
tive parents depending on their fitness values. By this step,
the population tends towards better individuals. Crossover
operator and mutation operator make the chromosomes
reach a wider search space [20].

3. Materials and Prediction Model

3.1. Study Sample. The sample data were gathered in the
previous case-control matched study for the analysis of risk
factors of hip fracture for older adults aged 60 and older
[21] and predicting the risk of hip bone fracture for elders in
Taiwan by ensemble backpropagation neural networks [10].
The sample included 228 cases who were the patients admit-
ted to the National Taiwan University Hospital with first
low-trauma hip fracture and 215 patients in the same hos-
pital, but without hip fracture.

Both cases and controls were interviewed by trained
interviewers with the same standardized questionnaire,
which included questions about basic and social demog-
raphy, history of diseases and conditions, self-rated overall
health, health habits, intake of food and nutritional supple-
ments, falls and fracture experiences, living environment and
potential home hazards, physical functioning and use of
assistive devices, and cognitive, and other functions. Athro-
pometric measures and physical assessments less influenced
by lower extremity function were performed after the ques-

tionnaire interview, including body height, weight, handgrip
strength, peak expiratory flow, and coordination test. Bone
mineral density (BMD) was examined at the nonfractured
side of proximal femur for cases and the same side for
matched controls by dual-energy X-ray absorptiometry
(DXA) using the same machine of DEXA (Model: QDR
4500A; Hologic, Waltham, MA, US), and read by the same
radiologist in 153 cases and 197 hospital controls. Leisure-
time physical activity in the health habits was measured
using total energy expended on all leisure-time activities in
a week. The physical functions were measured by questions
on the level of difficulty in performing 5 ADL, 6 IADL, and
8 mobility tasks. Cognitive function was measured with the
Mini-Mental State Examination (MMSE). Height and weight
were measured using electronic scales. BMI was calculated as
weight in kg/height in m2. Grip strength was measured with a
hand-held hydraulic dynamometer (Model: NC70142; North
Coast Medical, Morgan Hill, CA, US). The participants
used the dominant hand, and three maximal values were
averaged. Peak expiratory flow was assessed by using a peak
flow meter (Model: Standard Mini Wright; Clement Clarke
International, Harlow, Essex, UK). The participants took a
deep breath and blew as fast and vigorously as possible.
The maximum of three trials was chosen as the peak flow.
The finger-nose-finger test was conducted by asking the par-
ticipants to use their finger to alternately touch their own
nose and the interviewers’ finger as quickly as possible for as-
sessing the coordination. A total of 78 variables were
measured.

Because the number of variables was too large to be
collected rapidly in clinic, logistic regression was applied
to filter out irrelevant factors with two steps: univariable
analysis and multivariable analysis. After these analyses, five
significant factors (i.e., bone mineral density, experience of
fracture, average hand grip strength, intake of coffee, and
peak expiratory flow rate) remained to be the variables of
neural networks. Typically, the data for artificial neural net-
works were divided into two parts: modeling set and testing
set. Then the modeling set was further divided into training
group and validation group.

However, artificial neural networks were unstable predic-
tors that, with small changes in training data, may result in
very different models. To reduce the influences from unstable
predictors, k-fold cross-validation method was applied here
[19]. The study divided the database into five equal parts.
One part was for testing (i.e., testing data), and the other four
parts were combined to be modeling. This cross-validation
procedure was repeated five times so that we got five data
sets with different testing data.

3.2. Architecture of Prediction Model. Back-propagation neu-
ral network is the most popular training algorithm with
gradient techniques [22]. In previous study [7], back-
propagation neural network comprised an input layer (with
5 input variables), a hidden layer (with 10 nodes), and an
output layer (with 1 nodes). The ensemble artificial neural
networks method was utilized to improve the generalization
of the back-propagation neural network [23]: the previous
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Table 1: Standard parameter set for training.

Parameter Value

Transfer function of the hidden neurons Tan sigmoid

Transfer function of the output neurons Log sigmoid

Training function Trainscg

Maximal fail 1

Encoding Real (decimal)

Chromosome length 71

Population size 30

Weight initialization routine Rand

Initial range −1 ∼ 1

Fitness function Mean square error

Selection operation Roulette whe5el

Crossover BLX − 0.5

Mutation Non-uniform

Elitist 2

Stopping criterion 100 iterations

study structured 20 neural networks with different training
data and validation data then trained each of them for
15 times with random initial weights and then ensem-
bled all the neural networks with the best performance
(Figure 2). In this study, genetic algorithm tried to find
the optimization initial points instead of 15 random ini-
tial weights for back-propagation neural networks training
(Figure 3).

4. The Proposed Genetic Algorithm Model
in This Case

During the study, there were many methods, operators, or
ideals that tried to reach the optimum. The processes would
be presented below and the parameter set was listed in
Table 1.

4.1. Modeling Strategy. The modeling strategy was the
skeleton about how to optimize the initial weights of
the artificial neural network model and the study tried
two types. At the beginning of the study (i.e., type 1),
the genetic algorithm would evolve the population each
iteration with different training data (validation data is
also) and then choose 15 the best chromosomes into each
artificial neural networks instead of 15 random initial
weights (Figure 3(a)). However, neural network is unstable
with different results because of a small change in training
data. Therefore, the second strategy (i.e., type 2) was
presented: the training data were defined for each artificial
neural network, and then the genetic algorithm would
find the optimum initial weights of ANNs, respectively
(Figure 3(b)).

4.2. Initial Population. In genetic algorithms, the binary-
code and the real code are the primary schemes to describe
a chromosome. But, because the binary-coded scheme is
neither necessary nor beneficial [22, 24], and according to

the advantages of intuitiveness, resolution, and facility (i.e.,
need not to decode) for real code, the study used the real-
coded method for describing the chromosomes. There were
30 chromosomes generated in each generation, and each
of chromosomes consisted of 60 weights and 11 biases
represented by one digit. The range for the initial population
will affect the search efficiency, so we tried three levels. At
first, the range between −2 and 2 was used, because all of the
weights fell in this range after training by back-propagation
neural network. But later, the study tried to set the value
between −1 and 1 to compare with back-propagation neural
network. And last, because the crossover operator could
search over the initial range, we tried to narrow the range
again between −0.5 and 0.5.

4.3. Evaluation. Each member of the current population was
evaluated by fitness function based on the mean square error
value to assign the probability of being selected in matting
pool. The fitness function here was the back-propagation
neural network. The study inserts the solutions into the
networks and then calculated the error after the training. The
mean square error value represents how the solution is fit for
the problem, but it does not mean the solution is suitable for
being redrawn in the next generation. The reason is that it is
not difficult to find the optimal chromosomes with minimal
errors for training data, but it is difficult for validation data.
In other words, because the lowest mean square error in
training data was the goal of the networks, but the mean
square error in validation data used for preventing overfitting
of the neural networks should also be considered.

To avoid the above state, the study sets the limitation: no
matter how lower the mean square error was, if the error
resulted from validation data is higher than the threshold,
the chromosome would not be chosen. The threshold was
defined as with the optimal solution in last generation, the
network would not stop training until the validation error
went up, and the error was the threshold of the next
generation [25].

4.4. Reproduction. A mating pool of 30 chromosomes was
created by Roulette wheel selection operator according to the
probability of each chromosome in the current population.
The steps of the procedure were as follows: firstly, select the
random number between 0 and 1. Secondly, chose the chro-
mosome whose cumulative probability is a little more than
the random number into the mating pool. Finally, repeat
above steps until 30 new chromosomes are created in the
population.

4.5. Crossover. The process was described as below: firstly,
randomly select two chromosomes from the matting pool.
Secondly, choose four random positions and exchange genes
between the first two positions and two last positions.
Thirdly, randomly choose the numbers of the interval [cmin−
I · 0.5, cmax + I · 0.5] for four positions separately, where
cmin is the minimal value between two parents, I is the
range between cmin and cmax [26]. The last two springs were
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Figure 2: The skeleton with initial weights.
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Figure 4: Comparison of the MSE between BPNN and GA-based BPNN for different data: (a) training data, (b) testing data, (c) database
(including training and testing data).

generated into matting pool. The step was repeated until
four-fifth of population was altered.

The features of the operator were that using four
crossover points could match uniformly, in other words, the
beginning of the string would not always separate from the
end of the string. Secondly, chromosomes might include
genes that never appear; it was because our paper used the
blend crossover method (α value = 0.5) [27].

4.6. Mutation. The mutation operator used in this study was
nonuniform mutation [28]. Compared with random muta-

tion, the nonuniform mutation could change the interval
for mutating depending on iterations. The genes would be
mutated by (1)

c′i =
{
ci + Δ(t, bi − ci), if τ = 0

ci − Δ(t, ci − ai), if τ = 1,
(1)

where t is current generation, ai and bi are the initial ranges
of lowest and highest limits, τ is a random number which
may have a value of zero or one, and calculate Δ using (2)

Δ
(
t, y
) = y

(
1− r(1−(t/gmax))b

)
, (2)
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Figure 5: The ROC curves of the original BPNN and the GA-based BPNN for different ranges, (a1) and (a2) −0.5 to 0.5 range for the
training and testing data, (b1) and (b2) −1 to 1 range for the training and testing data, (c1) and (c2) −5 to 5 range for the training and
testing data.

where r is a random number from the interval [0,1], gmax is
the maximum number of generations, and b is a parameter
which determines the level of dependency on the number of
iterations (it is equal to five here) [29].

The feature of the operator was as follows: the operator
would make a uniform search in the initial space when t was
small and become narrower in later generations.

4.7. Stopping Criterion. The algorithm would terminate after
100 generations, because it had almost converged.

5. Results and Discussion

In this paper, the normal backpropagation algorithm has
been used in ANN. Regarding the learning rate chosen 0.01,
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the chosen 10 nodes for hidden layer and using 20% dataset
for testing, have been reported in our previous study [10].
Moreover, in order to avoid the overfitting, the neural
network would stop training when the validation error
started to go up (see Figure 4, the point signed with green
point). In these figures, we could make sure that the neural
networks converged rapidly with pretraining by genetic
algorithm.

The paper calculated the area under ROC curve (AUC)
with different initial range (Figure 5). The differences
between Figure 5 (a1) and (a2) (AUCmodeling = 0.858 and
AUCtesting = 0.802), and Figure 5 (b1) and (b2) (AUCmodeling

= 0.849 and AUCtesting = 0.831) seemed to be similar, but
pretty different in Figure 5 (c1) and (c2) (AUCmodeling = 0.778
and AUCtesting = 0.849). It means that if the initial range
of GA parameter is smaller it is able to get better testing
result.

To find the optimal initial weights however was a
difficult task. Firstly, it had misgivings about not only the
over-fitting from backpropagation in neural networks but
also the tendency toward minimal mean square error in
training data only without consideration of validation data in
genetic algorithms. Secondly, the searching space of genetic
algorithm might be limited by the initial range of the initial
weights. Last, the advantages of using genetic algorithms
compared with our previous study [10] should be based
on the performance of the neural networks on the testing
datasets, instead of the minimal square error only in the
modeling datasets.

Another consideration of minimal improvement of
genetic algorithms in this study was the ratio between the
number of chromosomes in a generation (i.e., population
size) and the length of a chromosome was small. It might be
the reason why the genetic algorithm cannot search exten-
sively to reach the optimum.

6. Conclusions and Future Work

The study results showed that the genetic algorithm obtained
a good result of AUC of 0.858 ± 0.00493 on modeling data
and 0.802 ± 0.03318 on testing data for small range of
initial parameter. They were slightly better than the results of
our previous study (0.868 ± 0.00387 and 0.796 ± 0.02559,
resp.). Thus, the preliminary study for only using simple GA
has been proved to be effective for improving the accuracy
of artificial neural networks. However, the genetic algorithm
should be further modified to improve the performance
because of the data of our hip fracture cases were highly non-
linear and complex. Our future work is to try different ways
of coding schemes to increase the efficiency of genetic oper-
ations, change the ratio between chromosome length and
population size to extend the searching space, and investigate
the effects of different initial ranges of initial weights on the
network performance.

The works that should be done to improve the algo-
rithms in the future are as follows: firstly, a better fitness
function is designed to prevent the overfitting in genetic
algorithm. Secondly, the criterion of stopping the algorithm

can try some other methods, for example, to stop when the
best chromosome does not change for a certain number of
generations or the chromosomes with similar minimal mean
square errors reach a certain number. Finally, other classifi-
cation methods, such as neurofuzzy algorithms [30], support
vector machines [9], and particle swarm optimizations [31]
would be a good candidate for improving this prediction
accuracy.
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year-olds in Göteborg, Sweden,” Eriksson & Sundh, 2010.

[18] D. J. Montana, Neural Network Weight Selection Using Genetic
Algorithms, Bolt Beranek and Newman, 1994.

[19] L. Davis, Ed., Genetic Algorithms and Simulated Annealing,
Pitman, London, UK, 1991.

[20] D. E. Goldberg, Genetic Algorithms in Machine Learning, Ad-
dison-Wesley, 1988.

[21] T. Y. Lan, S. M. Hou, C. Y. Chen et al., “Risk factors for hip
fracture in older adults: a case-control study in Taiwan,” Oste-
oporosis International, vol. 21, no. 5, pp. 773–784, 2010.

[22] L. M. Salchenberger, E. M. Cinar, and N. A. Lash, “Neural net-
works: a new tool for predicting thrift failures,” Decision
Sciences, vol. 23, pp. 899–916, 1992.

[23] L. K. Hansen and P. Salamon, “Neural network ensembles,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 12, no. 10, pp. 993–1001, 1990.

[24] P. Cunningham, J. Carney, and S. Jacob, “Stability problems
with artificial neural networks and the ensemble solution,” Ar-
tificial Intelligence in Medicine, vol. 20, no. 3, pp. 217–225,
2000.

[25] W. S. Sarle, “Stopping training and other remedies for over-
fitting,” in Proceeding of the 27th Symposium on the Inter Face,
1995.

[26] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling real-coded
genetic algorithms: operators and tools for behavioural anal-
ysis,” Artificial Intelligence Review, vol. 12, no. 4, pp. 265–319,
1998.

[27] L. J. Eshelman and J. D. Schaffer, “Real-coded genetic algo-
rithms and interval-schemata,” Foundation of Genetic Algo-
rithms, pp. 187–202, 1993.

[28] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolu-
tion Programs, Springer, 1992.

[29] L. Davis, Handbook of Genetic Algorithms, Van Nostrand Rein-
hold, 1991.

[30] J. W. F. Catto, M. F. Abbod, D. A. Linkens, and F. C. Hamdy,
“Neuro-fuzzy modeling: an accurate and interpretable
method for predicting bladder cancer progression,” Journal of
Urology, vol. 175, no. 2, pp. 474–479, 2006.

[31] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm opti-
mization,” Swarm Intelligence, vol. 1, pp. 33–37, 2007.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


