185 research outputs found
Observation of the Fractional Quantum Hall Effect in Graphene
When electrons are confined in two dimensions and subjected to strong
magnetic fields, the Coulomb interactions between them become dominant and can
lead to novel states of matter such as fractional quantum Hall liquids. In
these liquids electrons linked to magnetic flux quanta form complex composite
quasipartices, which are manifested in the quantization of the Hall
conductivity as rational fractions of the conductance quantum. The recent
experimental discovery of an anomalous integer quantum Hall effect in graphene
has opened up a new avenue in the study of correlated 2D electronic systems, in
which the interacting electron wavefunctions are those of massless chiral
fermions. However, due to the prevailing disorder, graphene has thus far
exhibited only weak signatures of correlated electron phenomena, despite
concerted experimental efforts and intense theoretical interest. Here, we
report the observation of the fractional quantum Hall effect in ultraclean
suspended graphene, supporting the existence of strongly correlated electron
states in the presence of a magnetic field. In addition, at low carrier density
graphene becomes an insulator with an energy gap tunable by magnetic field.
These newly discovered quantum states offer the opportunity to study a new
state of matter of strongly correlated Dirac fermions in the presence of large
magnetic fields
Multicomponent fractional quantum Hall effect in graphene
We report observation of the fractional quantum Hall effect (FQHE) in high
mobility multi-terminal graphene devices, fabricated on a single crystal boron
nitride substrate. We observe an unexpected hierarchy in the emergent FQHE
states that may be explained by strongly interacting composite Fermions with
full SU(4) symmetric underlying degrees of freedom. The FQHE gaps are measured
from temperature dependent transport to be up 10 times larger than in any other
semiconductor system. The remarkable strength and unusual hierarcy of the FQHE
described here provides a unique opportunity to probe correlated behavior in
the presence of expanded quantum degrees of freedom.Comment: 5 pages, 3 figure
Late-afternoon endurance exercise is more effective than morning endurance exercise at improving 24-h glucose and blood lipid levels
BackgroundGlucose and lipid tolerance reportedly exhibit diurnal variations, being lower in the evening than in the morning. Therefore, the effects of exercise on glucose and blood lipid levels at different times of the day may differ. This study aimed to investigate the effects of short-term endurance exercise intervention in the morning versus late afternoon on 24-h blood glucose variability and blood lipid levels.MethodsTwelve healthy young men participated in a randomized crossover trial. The participants were assigned to morning (09:00–11:00) or late afternoon (16:00–18:00) endurance exercise for a week, consisting of supervised exercise sessions on Mondays, Wednesdays, and Fridays. In the morning and evening trials, the participants walked for 60 min on a treadmill at approximately 60% of maximal oxygen uptake (VO2max). Following a 2-week wash-out period, the participants performed the exercise training regimen at another time point. Continuous glucose monitoring was used to evaluate blood glucose fluctuations during each 24-h trial period. Blood samples were collected before and after each intervention to examine blood lipid and hormonal responses.ResultsExamination of the area under the curve (AUC) of the glucose level changes for 24 h after the late afternoon versus morning exercise intervention revealed significantly lower values for the former versus the latter (P < 0.01). The AUC of glucose level changes after each meal was also lower after the late afternoon versus morning intervention, and significantly lower values were observed in the late afternoon versus morning trial for breakfast and dinner (P < 0.05, P < 0.01). In addition, a significant decrease in triglycerides (TG) and TG/high-density lipoprotein cholesterol (HDL-C) was noted after versus before the late afternoon intervention (P < 0.05).ConclusionsThese results suggest that late afternoon endurance exercise is more effective than morning endurance exercise at improving 24-h glucose and triglyceride levels
A Case of Successful Treatment of Stomal Variceal Bleeding with Transjugular Intrahepatic Portosystemic Shunt and Coil Embolization
Variceal bleeding from enterostomy site is an unusual complication of portal hypertension. The bleeding, however, is often recurrent and may be fatal. The hemorrhage can be managed with local measures in most patients, but when these fail, surgical interventions or portosystemic shunt may be required. Herein, we report a case in which recurrent bleeding from stomal varices, developed after a colectomy for rectal cancer, was successfully treated by placement of transjugular intrahepatic portosystemic shunt (TIPS) with coil embolization. Although several treatment options are available for this entity, we consider that TIPS with coil embolization offers minimally invasive and definitive treatment
Decreased Immunoreactivities and Functions of the Chloride Transporters, KCC2 and NKCC1, in the Lateral Superior Olive Neurons of Circling Mice
Objectives. We tested the possibility of differential expression and function of the potassium-chloride (KCC2) and sodium-potassium-2 chloride (NKCC1) co-transporters in the lateral superior olive (LSO) of heterozygous (+/cir) or homozygous (cir/cir) mice.Methods. Mice pups aged from postnatal (P) day 9 to 16 were used. Tails from mice were cut for DNA typing. For Immunohistochemical analysis, rabbit polyclonal anti-KCC2 or rabbit polyclonal anti-NKCC1 was used and the density of immunolabelings was evaluated using the NTH image program. For functional analysis, whole cell voltage clamp technique was used in brain stem slices and the changes of reversal potentials were evaluated at various membrane potentials.Results. Immunohistochemical analysis revealed both KCC2 and NKCC1 immunoreactivities were more prominent in heterozygous (+/cir) than homozygous (cir/cir) mice on P day 16. In P9-P12 heterozygous (+/cir) mice, the reversal potential (E(gly)) of glycine-induced currents was shifted to a more negative potential by 50 mu M bumetanide, a known NKCC1 blocker, and the negatively shifted EA, was restored by additional application of 1 mM furosemide, a KCC2 blocker (-58.9 +/- 2.6 mV to -66.0 +/- 1.5 mV [bumetanide], -66.0 1.5 mV to -59.8 +/- 2.8 mV [furosemide+bumetanide], n=11). However, only bumetanide was weakly, but significantly effective (-60.1 +/- 2.9 mV to -62.7 +/- 2.6 mV [bumetanide], -62.7 +/- 2.6 mV to -62.1 +/- 2.5 mV [furosernide+bumetanide], n=7) in P9-P12 homozygous (cir/cir) mice.Conclusion. The less prominent immunoreactivities and weak or absent responses to bumetanide or furosemide suggest impaired function or delayed development of both transporters in homozygous (cir/cir) mice
Properties of Graphene: A Theoretical Perspective
In this review, we provide an in-depth description of the physics of
monolayer and bilayer graphene from a theorist's perspective. We discuss the
physical properties of graphene in an external magnetic field, reflecting the
chiral nature of the quasiparticles near the Dirac point with a Landau level at
zero energy. We address the unique integer quantum Hall effects, the role of
electron correlations, and the recent observation of the fractional quantum
Hall effect in the monolayer graphene. The quantum Hall effect in bilayer
graphene is fundamentally different from that of a monolayer, reflecting the
unique band structure of this system. The theory of transport in the absence of
an external magnetic field is discussed in detail, along with the role of
disorder studied in various theoretical models. We highlight the differences
and similarities between monolayer and bilayer graphene, and focus on
thermodynamic properties such as the compressibility, the plasmon spectra, the
weak localization correction, quantum Hall effect, and optical properties.
Confinement of electrons in graphene is nontrivial due to Klein tunneling. We
review various theoretical and experimental studies of quantum confined
structures made from graphene. The band structure of graphene nanoribbons and
the role of the sublattice symmetry, edge geometry and the size of the
nanoribbon on the electronic and magnetic properties are very active areas of
research, and a detailed review of these topics is presented. Also, the effects
of substrate interactions, adsorbed atoms, lattice defects and doping on the
band structure of finite-sized graphene systems are discussed. We also include
a brief description of graphane -- gapped material obtained from graphene by
attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic
Quantitative RT-PCR profiling of the Rabbit Immune Response: Assessment of Acute Shigella flexneri Infection
Quantitative reverse transcription PCR analysis is an important tool to monitor changes in gene expression in animal models. The rabbit is a widely accepted and commonly used animal model in the study of human diseases and infections by viral, fungal, bacterial and protozoan pathogens. Only a limited number of rabbit genes have, however, been analyzed by this method as the rabbit genome sequence remains unfinished. Recently, increasing coverage of the genome has permitted the prediction of a growing number of genes that are relevant in the context of the immune response. We hereby report the design of twenty-four quantitative PCR primer pairs covering common cytokines, chemoattractants, antimicrobials and enzymes for a rapid, sensitive and quantitative analysis of the rabbit immune response. Importantly, all primer pairs were designed to be used under identical experimental conditions, thereby enabling the simultaneous analysis of all genes in a high-throughput format. This tool was used to analyze the rabbit innate immune response to infection with the human gastrointestinal pathogen Shigella flexneri. Beyond the known inflammatory mediators, we identified IL-22, IL-17A and IL-17F as highly upregulated cytokines and as first responders to infection during the innate phase of the host immune response. This set of qPCR primers also provides a convenient tool for monitoring the rabbit immune response during infection with other pathogens and other inflammatory conditions
Expression of Constitutively Active CDK1 Stabilizes APC-Cdh1 Substrates and Potentiates Premature Spindle Assembly and Checkpoint Function in G1 Cells
Mitotic progression in eukaryotic cells depends upon the activation of cyclin-dependent kinase 1 (CDK1), followed by its inactivation through the anaphase-promoting complex (APC)/cyclosome-mediated degradation of M-phase cyclins. Previous work revealed that expression of a constitutively active CDK1 (CDK1AF) in HeLa cells permitted their division, but yielded G1 daughter cells that underwent premature S-phase and early mitotic events. While CDK1AF was found to impede the sustained activity of APC-Cdh1, it was unknown if this defect improperly stabilized mitotic substrates and contributed to the occurrence of these premature M phases. Here, we show that CDK1AF expression in HeLa cells improperly stabilized APC-Cdh1 substrates in G1-phase daughter cells, including mitotic kinases and the APC adaptor, Cdc20. Division of CDK1AF-expressing cells produced G1 daughters with an accelerated S-phase onset, interrupted by the formation of premature bipolar spindles capable of spindle assembly checkpoint function. Further characterization of these phenotypes induced by CDK1AF expression revealed that this early spindle formation depended upon premature CDK1 and Aurora B activities, and their inhibition induced rapid spindle disassembly. Following its normal M-phase degradation, we found that the absence of Wee1 in these prematurely cycling daughter cells permitted the endogenous CDK1 to contribute to these premature mitotic events, since expression of a non-degradable Wee1 reduced the number of cells that exhibited premature cyclin B1oscillations. Lastly, we discovered that Cdh1-ablated cells could not be forced into a premature M phase, despite cyclin B1 overexpression and proteasome inhibition. Together, these results demonstrate that expression of constitutively active CDK1AF hampers the destruction of critical APC-Cdh1 targets, and that this type of condition could prevent newly divided cells from properly maintaining a prolonged interphase state. We propose that this more subtle type of defect in activity of the APC-driven negative-feedback loop may have implications for triggering genome instability and tumorigenesis
Pseudotumoural soft tissue lesions of the foot and ankle: a pictorial review
In the foot and ankle region, benign neoplasms and pseudotumoural soft tissue lesions are significantly more frequent than malignant tumours. The pseudotumoural lesions constitute a heterogeneous group, with highly varied aetiology and histopathology. This article reviews the imaging features of the most common pseudotumours of the soft tissues in the foot and ankle. Although the imaging characteristics of several of the lesions discussed are non-specific, combining them with lesion location and clinical features allows the radiologist to suggest a specific diagnosis in most cases
- …