7,191 research outputs found
Recommended from our members
Anharmonic multi-phonon nonradiative transition: An ab initio calculation approach
Nonradiative carrier recombinations at deep centers in semiconductors are of great importance for both fundamental physics and device engineering. In this article, we provide a revised analysis of Huang’s original nonradiative multi-phonon (NMP) theory with ab initio calculations. First, we confirmed at the first-principles level that Huang’s concise formula gives the same results as the matrix-based formula, and that Huang’s high-temperature formula provides an analytical expression for the coupling constant in Marcus theory. Secondly, we correct for anharmonic effects by taking into account local phonon-mode variations for different charge states of a defect. The corrected capture rates for defects in GaN and SiC agree well with experiments
Magnetic coupling properties of rare-earth metals (Gd, Nd) doped ZnO: first-principles calculations
The electronic structure and magnetic coupling properties of rare-earth
metals (Gd, Nd) doped ZnO have been investigated using first-principles
methods. We show that the magnetic coupling between Gd or Nd ions in the
nearest neighbor sites is ferromagnetic. The stability of the ferromagnetic
coupling between Gd ions can be enhanced by appropriate electron doping into
ZnO:Gd system and the room-temperature ferromagnetism can be achieved. However,
for ZnO:Nd system, the ferromagnetism between Nd ions can be enhanced by
appropriate holes doping into the sample. The room-temperature ferromagnetism
can also be achieved in the \emph{n}-conducting ZnO:Nd sample. Our calculated
results are in good agreement with the conclusions of the recent experiments.
The effect of native defects (V, V) on the
ferromagnetism is also discussed.Comment: 5 pages, 5 figure
Soil-Structure Interaction on the Response of Jacket Type Offshore Wind Turbine
Jacket structures are still at the early stage of their development for use in the offshore wind industry. The aim of this paper is to investigate the effect of the soil-structure interaction on the response of an offshore wind turbine with a jacket-type foundation. For this purpose, two different models of flexible foundation-the p-y model and the p-y model considering pile groups effect-are employed to compare the dynamic responses with the fixed-base model. The modal analysis and the coupled dynamic analysis are carried out under deterministic and stochastic conditions. The influence of the soil-structure interaction on the response of the jacket foundation predicts that the flexible foundation model is necessary to estimate the loads of the offshore wind turbine structure well. It is suggested that during fatigue analysis the pile group effect should be considered for the jacket foundation.None1174Ysciescopu
Health-related quality of life as measured with EQ-5D among populations with and without specific chronic conditions: A population-based survey in Shaanxi province, China
© 2013 Tan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Introduction: The aim of this study was to examine health-related quality of life (HRQoL) as measured by EQ-5D and to investigate the influence of chronic conditions and other risk factors on HRQoL based on a distributed sample located in Shaanxi Province, China. Methods: A multi-stage stratified cluster sampling method was performed to select subjects. EQ-5D was employed to measure the HRQoL. The likelihood that individuals with selected chronic diseases would report any problem in the EQ-5D dimensions was calculated and tested relative to that of each of the two reference groups. Multivariable linear regression models were used to investigate factors associated with EQ VAS. Results: The most frequently reported problems involved pain/discomfort (8.8%) and anxiety/depression (7.6%). Nearly half of the respondents who reported problems in any of the five dimensions were chronic patients. Higher EQ VAS scores were associated with the male gender, higher level of education, employment, younger age, an urban area of residence, access to free medical service and higher levels of physical activity. Except for anemia, all the selected chronic diseases were indicative of a negative EQ VAS score. The three leading risk factors were cerebrovascular disease, cancer and mental disease. Increases in age, number of chronic conditions and frequency of physical activity were found to have a gradient effect. Conclusion: The results of the present work add to the volume of knowledge regarding population health status in this area, apart from the known health status using mortality and morbidity data. Medical, policy, social and individual attention should be given to the management of chronic diseases and improvement of HRQoL. Longitudinal studies must be performed to monitor changes in HRQoL and to permit evaluation of the outcomes of chronic disease intervention programs. © 2013 Tan et al.National Nature Science Foundation (No. 8107239
Photocurrent measurements of supercollision cooling in graphene
The cooling of hot electrons in graphene is the critical process underlying
the operation of exciting new graphene-based optoelectronic and plasmonic
devices, but the nature of this cooling is controversial. We extract the hot
electron cooling rate near the Fermi level by using graphene as novel
photothermal thermometer that measures the electron temperature () as it
cools dynamically. We find the photocurrent generated from graphene
junctions is well described by the energy dissipation rate , where the heat capacity is and is the
base lattice temperature. These results are in disagreement with predictions of
electron-phonon emission in a disorder-free graphene system, but in excellent
quantitative agreement with recent predictions of a disorder-enhanced
supercollision (SC) cooling mechanism. We find that the SC model provides a
complete and unified picture of energy loss near the Fermi level over the wide
range of electronic (15 to 3000 K) and lattice (10 to 295 K) temperatures
investigated.Comment: 7pages, 5 figure
Experience and Challenges from Clinical Trials with Malaria Vaccines in Africa.
Malaria vaccines are considered amongst the most important modalities for potential elimination of malaria disease and transmission. Research and development in this field has been an area of intense effort by many groups over the last few decades. Despite this, there is currently no licensed malaria vaccine. Researchers, clinical trialists and vaccine developers have been working on many approached to make malaria vaccine available.African research institutions have developed and demonstrated a great capacity to undertake clinical trials in accordance to the International Conference on Harmonization-Good Clinical Practice (ICH-GCP) standards in the last decade; particularly in the field of malaria vaccines and anti-malarial drugs. This capacity is a result of networking among African scientists in collaboration with other partners; this has traversed both clinical trials and malaria control programmes as part of the Global Malaria Action Plan (GMAP). GMAP outlined and support global strategies toward the elimination and eradication of malaria in many areas, translating in reduction in public health burden, especially for African children. In the sub-Saharan region the capacity to undertake more clinical trials remains small in comparison to the actual need.However, sustainability of the already developed capacity is essential and crucial for the evaluation of different interventions and diagnostic tools/strategies for other diseases like TB, HIV, neglected tropical diseases and non-communicable diseases. There is urgent need for innovative mechanisms for the sustainability and expansion of the capacity in clinical trials in sub-Saharan Africa as the catalyst for health improvement and maintained
Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases
Signatures of arithmetic simplicity in metabolic network architecture
Metabolic networks perform some of the most fundamental functions in living
cells, including energy transduction and building block biosynthesis. While
these are the best characterized networks in living systems, understanding
their evolutionary history and complex wiring constitutes one of the most
fascinating open questions in biology, intimately related to the enigma of
life's origin itself. Is the evolution of metabolism subject to general
principles, beyond the unpredictable accumulation of multiple historical
accidents? Here we search for such principles by applying to an artificial
chemical universe some of the methodologies developed for the study of genome
scale models of cellular metabolism. In particular, we use metabolic flux
constraint-based models to exhaustively search for artificial chemistry
pathways that can optimally perform an array of elementary metabolic functions.
Despite the simplicity of the model employed, we find that the ensuing pathways
display a surprisingly rich set of properties, including the existence of
autocatalytic cycles and hierarchical modules, the appearance of universally
preferable metabolites and reactions, and a logarithmic trend of pathway length
as a function of input/output molecule size. Some of these properties can be
derived analytically, borrowing methods previously used in cryptography. In
addition, by mapping biochemical networks onto a simplified carbon atom
reaction backbone, we find that several of the properties predicted by the
artificial chemistry model hold for real metabolic networks. These findings
suggest that optimality principles and arithmetic simplicity might lie beneath
some aspects of biochemical complexity
MicroRNAs in pulmonary arterial remodeling
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH
Lactate Regulates Metabolic and Proinflammatory Circuits in Control of T Cell Migration and Effector Functions
Licensed by the Creative Commons Attribution Licens
- …
