57 research outputs found

    Small molecular inhibitors reverse cancer metastasis by blockading oncogenic PITPNM3

    Get PDF
    Most cancer‐related deaths are a result of metastasis. The development of small molecular inhibitors reversing cancer metastasis represents a promising therapeutic opportunity for cancer patients. This pan‐cancer analysis identifies oncogenic roles of membrane‐associated phosphatidylinositol transfer protein 3 (PITPNM3), which is crucial for cancer metastasis. Small molecules targeting PITPNM3 must be explored further. Here, PITPNM3‐selective small molecular inhibitors are reported. These compounds exhibit target‐specific inhibition of PITPNM3 signaling, thereby reducing metastasis of breast cancer cells. Besides, by using nanoparticle‐based delivery systems, these PITPNM3‐selective compounds loaded nanoparticles significantly repress metastasis of breast cancer in mouse xenograft models and organoid models. Notably, the results establish an important metastatic‐promoting role for PITPNM3 and offer PITPNM3 inhibition as a therapeutic strategy in metastatic breast cancer

    Markers of Tumor-Initiating Cells Predict Chemoresistance in Breast Cancer

    Get PDF
    PURPOSE: Evidence is lacking whether the number of breast tumor-initiating cells (BT-ICs) directly correlates with the sensitivity of breast tumors to chemotherapy. Here, we evaluated the association between proportion of BT-ICs and chemoresistance of the tumors. METHODS: Immunohistochemical staining(IHC) was used to examine the expression of aldehyde dehydrogenase 1 (ALDH1) and proliferating cell nuclear antigen, and TUNEL was used to detect the apoptosis index. The significance of various variables in patient survival was analyzed using a Cox proportional hazards model. The percentage of BT-ICs in breast cancer cell lines and primary breast tumors was determined by ALDH1 enzymatic assay, CD44(+)/CD24(-) phenotype and mammosphere formation assay. RESULTS: ALDH1 expression determined by IHC in primary breast cancers was associated with poor clinical response to neoadjuvant chemotherapy and reduced survival in breast cancer patients. Breast tumors that contained higher proportion of BT-ICs with CD44(+)/CD24(-) phenotype, ALDH1 enzymatic activity and sphere forming capacity were more resistant to neoadjuvant chemotherapy. Chemoresistant cell lines AdrR/MCF-7 and SK-3rd, had increased number of cells with sphere forming capacity, CD44(+)/CD24(-) phenotype and side-population. Regardless the proportion of T-ICs, FACS-sorted CD44(+)/CD24(-) cells that derived from primary tumors or breast cancer lines were about 10-60 fold more resistant to chemotherapy relative to the non- CD44(+)/CD24(-) cells and their parental cells. Furthermore, our data demonstrated that MDR1 (multidrug resistance 1) and ABCG2 (ATP-binding cassette sub-family G member 2) were upregulated in CD44(+)/CD24(-) cells. Treatment with lapatinib or salinomycin reduced the proportion of BT-ICs by nearly 50 fold, and thus enhanced the sensitivity of breast cancer cells to chemotherapy by around 30 fold. CONCLUSIONS: These data suggest that the proportion of BT-ICs is associated with chemotherapeutic resistance of breast cancer. It highlights the importance of targeting T-ICs, rather than eliminating the bulk of rapidly dividing and terminally differentiated cells, in novel anti-cancer strategies

    Proto-oncogene Src links lipogenesis via lipin-1 to breast cancer malignancy

    Get PDF
    Src基因是哺乳动物中发现的第一个原癌基因,其编码的蛋白是一个酪氨酸激酶,在促进乳腺癌、肺癌等诸多肿瘤的发生、进展和恶化中起着重要的作用。在研究中,研究团队发现Src能够承接生长因子和肥胖微环境相关的因子如胰岛素和瘦素的信号,通过直接磷酸化lipin-1,增强其催化合成甘油脂的活性,提高细胞摄入的脂肪酸向甘油脂尤其是磷脂转化。进一步实验表明,Src磷酸化lipin-1能够加速乳腺癌细胞生长,促进小鼠模型中肿瘤的进展和转移。这项研究不但做出了对脂肪合成途径的调控机制的又一重要发现,还揭示了原癌基因Src可以承接癌细胞内外的活化信号,通过lipin-1为媒介重塑癌细胞脂代谢,使得肿瘤细胞具有增殖和转移的优势。该论文揭示了臭名昭著的原癌基因Src通过直接结合并磷酸化lipin-1(一种磷脂酸磷酸化酶,在脂质代谢中具有重要作用),以增强其酶活性,从而加速甘油酯的合成速率,进而促进乳腺癌的发生发展。 该研究由厦门大学生命科学学院、广州医科大学第五附属医院、第四军医大学西京医院和中山大学孙逸仙纪念医院等单位合作完成,厦门大学生命科学学院博士后宋林涛和广州医科大学第五附属医院刘志华教授为该论文的共同第一作者。【Abstract】Increased lipogenesis has been linked to an increased cancer risk and poor prognosis; however, the underlying mechanisms remain obscure. Here we show that phosphatidic acid phosphatase (PAP) lipin-1, which generates diglyceride precursors necessary for the synthesis of glycerolipids, interacts with and is a direct substrate of the Src proto-oncogenic tyrosine kinase. Obesity-associated microenvironmental factors and other Src-activating growth factors, including the epidermal growth factor, activate Src and promote Src-mediated lipin-1 phosphorylation on Tyr398, Tyr413 and Tyr795 residues. The tyrosine phosphorylation of lipin-1 markedly increases its PAP activity, accelerating the synthesis of glycerophospholipids and triglyceride. Alteration of the three tyrosine residues to phenylalanine (3YF-lipin-1) disables lipin-1 from mediating Src-enhanced glycerolipid synthesis, cell proliferation and xenograft growth. Re-expression of 3YF-lipin-1 in PyVT;Lpin1−/− mice fails to promote progression and metastasis of mammary tumours. Human breast tumours exhibit increased p-Tyr-lipin-1 levels compared to the adjacent tissues. Importantly, statistical analyses show that levels of p-Tyr-lipin-1 correlate with tumour sizes, lymph node metastasis, time to recurrence and survival of the patients. These results illustrate a direct lipogenesis-promoting role of the pro-oncogenic Src, providing a mechanistic link between obesity-associated mitogenic signaling and breast cancer malignancy.This work was supported by grants from the National Natural Science Foundation of China (#31822027, #31690101, #91854208, #31871168, #82002965), the Fundamental Research Funds for the Central Universities (#20720190084), Project “111” sponsored by the State Bureau of Foreign Experts and Ministry of Education of China (#BP2018017), XMU Training Programme of Innovation and Entrepreneurship for Undergraduates (#2017Y0578, #2018Y1281) and China Postdoctoral Science Foundation (#2019M652254). 该研究也得到了国家自然科学基金,中央高校基础研究项目和中国博士后科学基金等的资助

    Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice

    Get PDF
    We here report a genome-editing strategy to correct spinal muscular atrophy (SMA). Rather than directly targeting the pathogenic exonic mutations, our strategy employed Cas9 and guide-sgRNA for the targeted disruption of intronic splicing-regulatory elements. We disrupted intronic splicing silencers (ISSs, including ISS-N1 and ISS + 100) of survival motor neuron (SMN) 2, a key modifier gene of SMA, to enhance exon 7 inclusion and full-length SMN expression in SMA iPSCs. Survival of splicing-corrected iPSC-derived motor neurons was rescued with SMN restoration. Furthermore, co-injection of Cas9 mRNA from Streptococcus pyogenes (SpCas9) or Cas9 from Staphylococcus aureus (SaCas9) alongside their corresponding sgRNAs targeting ISS-N1 into zygotes rescued 56% and 100% of severe SMA transgenic mice (Smn , SMN2 ). The median survival of the resulting mice was extended to >400 days. Collectively, our study provides proof-of-principle for a new strategy to therapeutically intervene in SMA and other RNA-splicing-related diseases. -/- tg/

    miR-200 Enhances Mouse Breast Cancer Cell Colonization to Form Distant Metastases

    Get PDF
    BACKGROUND: The development of metastases involves the dissociation of cells from the primary tumor to penetrate the basement membrane, invade and then exit the vasculature to seed, and colonize distant tissues. The last step, establishment of macroscopic tumors at distant sites, is the least well understood. Four isogenic mouse breast cancer cell lines (67NR, 168FARN, 4TO7, and 4T1) that differ in their ability to metastasize when implanted into the mammary fat pad are used to model the steps of metastasis. Only 4T1 forms macroscopic lung and liver metastases. Because some miRNAs are dysregulated in cancer and affect cellular transformation, tumor formation, and metastasis, we examined whether changes in miRNA expression might explain the differences in metastasis of these cells. METHODOLOGY/PRINCIPAL FINDINGS: miRNA expression was analyzed by miRNA microarray and quantitative RT-PCR in isogenic mouse breast cancer cells with distinct metastatic capabilities. 4T1 cells that form macroscopic metastases had elevated expression of miR-200 family miRNAs compared to related cells that invade distant tissues, but are unable to colonize. Moreover, over-expressing miR-200 in 4TO7 cells enabled them to metastasize to lung and liver. These findings are surprising since the miR-200 family was previously shown to promote epithelial characteristics by inhibiting the transcriptional repressor Zeb2 and thereby enhancing E-cadherin expression. We confirmed these findings in these cells. The most metastatic 4T1 cells acquired epithelial properties (high expression of E-cadherin and cytokeratin-18) compared to the less metastatic cells. CONCLUSIONS/SIGNIFICANCE: Expression of miR-200, which promotes a mesenchymal to epithelial cell transition (MET) by inhibiting Zeb2 expression, unexpectedly enhances macroscopic metastases in mouse breast cancer cell lines. These results suggest that for some tumors, tumor colonization at metastatic sites might be enhanced by MET. Therefore the epithelial nature of a tumor does not predict metastatic outcome

    Catalytic oxidation of ethyl acetate over Ru-Cu bimetallic catalysts: Further insights into reaction mechanism via in situ FTIR and DFT studies

    No full text
    In this work, ruthenium-based bimetallic catalysts of 1Ru-5 M/TiO2 (M = Co, Ce, Fe, Mn, Cu, Ni) were prepared and evaluated in ethyl acetate oxidation. It was found that 1Ru-5Cu/TiO2 gave the highest catalytic activity. The influence of CuO content and the preparation method on the catalytic activity was also studied. 1Ru-5Cu/TiO2 showed great catalytic stability in the on-stream reaction test. The influence of H2O on the catalytic activity is presented. The bimetallic catalyst 1Ru-5Cu/TiO2 showed better catalytic performance than the monometallic catalysts 1Ru/TiO2 and 5Cu/TiO2. XRD, TEM, HAADF-STEM, H-2-TPR, and XPS characterizations were conducted, and the synergistic effect between Ru and Cu was well presented. In situ FTIR studies were also conducted, and the reaction intermediates were revealed on the catalyst surface. The theoretical calculations suggested that ethyl acetate is more easily adsorbed on the CuO surface, while it reacts more easily on the RuO2 surface. Accordingly, a reaction mechanism for the catalytic oxidation of ethyl acetate over a Ru-Cu bimetallic catalyst is proposed. (C) 2018 Elsevier Inc. All rights reserved
    corecore