322 research outputs found

    Kosterlitz-Thouless phase transition and reentrance in an anisotropic 3-state Potts model on the generalized Kagome lattice

    Full text link
    The unusual reentrant phenomenon is observed in the anisotropic 3-state Potts model on a gen- eralized Kagome lattice. By employing the linearized tensor renormalization group method, we find that the reentrance can appear in the region not only under a partial ordered phase as commonly known but also a phase without a local order parameter, which is uncovered to fall into the uni- versality of the Kosterlitz-Thouless (KT) type. The region of the reentrance depends strongly on the ratios of the next nearest couplings {\alpha} = J2 /|J1 | and {\beta} = J3 /|J1 |. The phase diagrams in the plane of temperature versus {\beta} for different {\alpha} are obtained. Through massive calculations, it is also revealed that the quasi-entanglement entropy can be used to accurately detect the KT transition temperature

    Serum zinc levels in 368 patients with oral mucosal diseases: a preliminary study

    Get PDF
    Background: The aim of this study was to assess the serum zinc levels in patients with common oral mucosal diseases by comparing these to healthy controls. Material and Methods: A total of 368 patients, which consisted of 156 recurrent aphthous stomatitis (RAS) patients, 57 oral lichen planus (OLP) patients, 55 burning mouth syndrome (BMS) patients, 54 atrophic glossitis (AG) patients, 46 xerostomia patients, and 115 sex-and age-matched healthy control subjects were enrolled in this study. Serum zinc levels were measured in all participants. Statistical analysis was performed using a one-way ANOVA, t-test, and Chi-square test. Results: The mean serum zinc level in the healthy control group was significantly higher than the levels of all other groups ( p < 0.001). No individual in the healthy control group had a serum zinc level less than the minimum normal value. However, up to 24.7% (13/54) of patients with AG presented with zinc deficiency, while 21.2% (33/156) of patients with RAS, 16.4% (9/55) of patients with BMS, 15.2% (7/46) of patients with xerostomia, and 14.0% (8/57) of patients with OLP were zinc deficient. Altogether, the zinc deficiency rate was 19.02% (70/368) in the oral mucosal diseases (OMD) group (all patients with OMD). The difference between the OMD and healthy control group was significant ( p < 0.001). Gender differences in serum zinc levels were also present, although not statistically significant. Conclusions: Zinc deficiency may be involved in the pathogenesis of common oral mucosal diseases. Zinc supplementation may be a useful treatment for oral mucosal diseases, but this requires further investigation; the optimal serum level of zinc, for the prevention and treatment of oral mucosal diseases, remains to be determined

    Proteomic identification of OsCYP2, a rice cyclophilin that confers salt tolerance in rice (Oryza sativa L.) seedlings when overexpressed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High Salinity is a major environmental stress influencing growth and development of rice. Comparative proteomic analysis of hybrid rice shoot proteins from Shanyou 10 seedlings, a salt-tolerant hybrid variety, and Liangyoupeijiu seedlings, a salt-sensitive hybrid variety, was performed to identify new components involved in salt-stress signaling.</p> <p>Results</p> <p>Phenotypic analysis of one protein that was upregulated during salt-induced stress, cyclophilin 2 (OsCYP2), indicated that <it>OsCYP2 </it>transgenic rice seedlings had better tolerance to salt stress than did wild-type seedlings. Interestingly, wild-type seedlings exhibited a marked reduction in maximal photochemical efficiency under salt stress, whereas no such change was observed for <it>OsCYP2</it>-transgenic seedlings. <it>OsCYP2</it>-transgenic seedlings had lower levels of lipid peroxidation products and higher activities of antioxidant enzymes than wild-type seedlings. Spatiotemporal expression analysis of <it>OsCYP2 </it>showed that it could be induced by salt stress in both Shanyou 10 and Liangyoupeijiu seedlings, but Shanyou 10 seedlings showed higher <it>OsCYP2 </it>expression levels. Moreover, circadian rhythm expression of <it>OsCYP2 </it>in Shanyou 10 seedlings occurred earlier than in Liangyoupeijiu seedlings. Treatment with PEG, heat, or ABA induced <it>OsCYP2 </it>expression in Shanyou 10 seedlings but inhibited its expression in Liangyoupeijiu seedlings. Cold stress inhibited <it>OsCYP2 </it>expression in Shanyou 10 and Liangyoupeijiu seedlings. In addition, OsCYP2 was strongly expressed in shoots but rarely in roots in two rice hybrid varieties.</p> <p>Conclusions</p> <p>Together, these data suggest that OsCYP2 may act as a key regulator that controls ROS level by modulating activities of antioxidant enzymes at translation level. OsCYP2 expression is not only induced by salt stress, but also regulated by circadian rhythm. Moreover, OsCYP2 is also likely to act as a key component that is involved in signal pathways of other types of stresses-PEG, heat, cold, or ABA.</p

    Protecting Intestinal Microenvironment Alleviates Acute Graft-Versus-Host Disease

    Get PDF
    Acute gut graft-versus-host disease (aGVHD) is a leading threat to the survival of allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Abnormal gut microbiota is correlated with poor prognosis in allo-HSCT recipients. A disrupted intestinal microenvironment exacerbates dysbiosis in GVHD patients. We hypothesized that maintaining the integrity of the intestinal barrier may protect gut microbiota and attenuate aGVHD. This hypothesis was tested in a murine aGVHD model and an in vitro intestinal epithelial culture. Millipore cytokine array was utilized to determine the expression of proinflammatory cytokines in the serum. The 16S rRNA sequencing was used to determine the abundance and diversity of gut microbiota. Combining Xuebijing injection (XBJ) with a reduced dose of cyclosporine A (CsA) is superior to CsA alone in improving the survival of aGVHD mice and delayed aGVHD progression. This regimen also reduced interleukin 6 (IL-6) and IL-12 levels in the peripheral blood. 16S rRNA analysis revealed the combination treatment protected gut microbiota in aGVHD mice by reversing the dysbiosis at the phylum, genus, and species level. It inhibited enterococcal expansion, a hallmark of GVHD progression. It inhibited enterococcal expansion, a hallmark of GVHD progression. Furthermore, Escherichia coli expansion was inhibited by this regimen. Pathology analysis revealed that the combination treatment improved the integrity of the intestinal tissue of aGVHD mice. It also reduced the intestinal permeability in aGVHD mice. Besides, XBJ ameliorated doxorubicin-induced intestinal epithelial death in CCK-8 assay. Overall, combining XBJ with CsA protected the intestinal microenvironment to prevent aGVHD. Our findings suggested that protecting the intestinal microenvironment could be a novel strategy to manage aGVHD. Combining XBJ with CsA may reduce the side effects of current aGVHD prevention regimens and improve the quality of life of allo-HSCT recipients

    Phylogeny of Leontopodium (Asteraceae) in China—with a reference to plastid genome and nuclear ribosomal DNA

    Get PDF
    The infrageneric taxonomy system, species delimitation, and interspecies systematic relationships of Leontopodium remain controversial and complex. However, only a few studies have focused on the molecular phylogeny of this genus. In this study, the characteristics of 43 chloroplast genomes of Leontopodium and its closely related genera were analyzed. Phylogenetic relationships were inferred based on chloroplast genomes and nuclear ribosomal DNA (nrDNA). Finally, together with the morphological characteristics, the relationships within Leontopodium were identified and discussed. The results showed that the chloroplast genomes of Filago, Gamochaeta, and Leontopodium were well-conserved in terms of gene number, gene order, and GC content. The most remarkable differences among the three genera were the length of the complete chloroplast genome, large single-copy region, small single-copy region, and inverted repeat region. In addition, the chloroplast genome structure of Leontopodium exhibited high consistency and was obviously different from that of Filago and Gamochaeta in some regions, such as matk, trnK (UUU)-rps16, petN-psbM, and trnE (UUC)-rpoB. All the phylogenetic trees indicated that Leontopodium was monophyletic. Except for the subgeneric level, our molecular phylogenetic results were inconsistent with the previous taxonomic system, which was based on morphological characteristics. Nevertheless, we found that the characteristics of the leaf base, stem types, and carpopodium base were phylogenetically correlated and may have potential value in the taxonomic study of Leontopodium. In the phylogenetic trees inferred using complete chloroplast genomes, the subgen. Leontopodium was divided into two clades (Clades 1 and 2), with most species in Clade 1 having herbaceous stems, amplexicaul, or sheathed leaves, and constricted carpopodium; most species in Clade 2 had woody stems, not amplexicaul and sheathed leaves, and not constricted carpopodium

    Immunity duration of a recombinant adenovirus type-5 vector-based Ebola vaccine and a homologous prime-boost immunisation in healthy adults in China: fi nal report of a randomised, double-blind, placebo-controlled, phase 1 trial

    Get PDF
    Background The 2013–15 Ebola virus disease epidemic in west Africa greatly accelerated the development of Ebola vaccine. We aimed to analyse the immune persistence induced by one shot of an adenovirus type-5 vector-based Ebola virus vaccine up to 6 months and the eff ect of boosting with a homologous vector in healthy adults in China. Methods In a randomised, double-blind, placebo-controlled, phase 1 clinical trial in one site in Jiangsu Province, China, 120 healthy adults aged 18–60 years received an initial dose of intramuscular adenovirus type-5 Ebola virus vaccine of 4·0 × 10¹⁰ viral particles, 1·6 × 10¹¹ viral particles, or placebo, and were followed up to day 168. Participants were subsequently re-recruited to receive a booster dose of the same vaccine or placebo, in the same dose, at month 6. Women who were pregnant, breastfeeding, or planned to become pregnant during the next month were excluded. Randomisation was conducted by computer-generated block randomisation. Randomisation data were unmasked for interim analysis of the data obtained between days 0–28 but not disclosed to participants or site staff . Safety and immunogenicity analysis were done on the intention-to-treat population. We aimed to assess the safety profi le of the experimental vaccine and the immunity responses to a single-dose immunisation or a homologous prime-boost regimen. Primary outcomes were Ebola glycoprotein-specifi c ELISA antibody responses 28 days post-boost and the occurrences of adverse reactions post-boost. The original trial and the extended booster study were registered with ClinicalTrials.gov, numbers NCT02326194 and NCT02533791, respectively. Findings Between Dec 28, 2014, and Jan 9, 2015, we enrolled 210 volunteers. 90 participants were not randomised due to not meeting inclusion criteria (61), meeting exclusion criteria (4), or withdrawal of consent (25). 120 people were randomly assigned to receive intramuscular Ebola vaccine at 4·0 × 10¹⁰ viral particles (low dose, n=40), Ebola vaccine at 1·6 × 10¹¹ viral particles (high dose, n=40), or placebo (n=40, in two groups of 20). After prime vaccination, the geometric mean titer (GMT) of ELISA EC90 peaked at 682·7 (95% CI 424·3–1098·5) in the low-dose vaccine group and 1305·7 (970·1–1757·2) in the high-dose vaccine group at day 28, and then fell gradually through the next a few months to 575·5 (394·8–838·8) in the high-dose vaccine group and 197·9 (107·9–362·7) in the low-dose vaccine group at day 168. No specific response was recorded in the placebo group with a GMT of 5·0. Of the 120 participants involved in the initial trial, ten participants declined to participate, and 110 were included in the boost immunisation: 38 received the low dose, 35 received the high dose, and 37 received the placebo. At day 28 after boost vaccination, the ELISA EC90 titres rapidly rose to 6110 (95% CI 4705–7935) in the low-dose group and to 11825 (8904–15705) in the high dose group. 78 of 110 participants reported at least one solicited adverse reaction within the fi rst 7 days after booster administration. Both of the groups who received vaccine showed signifi cantly higher incidence of mild or moderate solicited adverse reactions than did the placebo group. Interpretation The adenovirus 5-vectored Ebola vaccine of 1·6 × 10¹¹ viral particles was highly immunogenic and safe. The lower dose of 4·0 × 10¹⁰ viral particles was also safe, but immunogenicity seemed to be more vulnerable to the pre-existing immunity of adenovirus 5. A homologous priming-boosting regimen with adenovirus type-5 Ebola vaccine at 6 months interval was able to elicit greater antibody responses with longer duration. These results support an immunisation strategy to implement a booster injection for a more durable protection against Ebola virus disease

    Detachment Activated CyPA/CD147 Induces Cancer Stem Cell Potential in Non-stem Breast Cancer Cells

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Background: Cancer stem cells (CSCs), responsible for cancer metastasis and recurrence, are generated from non-CSCs after chemo-radiation therapy. This study investigated the induction of CSC potential in non-stem breast cancer cells and the underlying molecular mechanisms in detachment culture. Methods: Bulk breast cancer cells, or sorted non-CSCs and CSCs were cultured under an attached or detached condition to assess CSC numbers, ability to form tumor spheres, expression of stemness markers, and chemoresistance. Lentivirus carrying CD147 shRNA or cDNA was used to manipulate CD147 expression, while CD147 ligand recombinant cyclophilin A (CyPA) or its inhibitor was used to activate or inhibit CD147 signaling. Results: Detachment promoted anoikis resistance, chemoresistance, sphere formation, self-renewal, and expression of stemness markers in breast cancer cells. Detachment increased functional ALDH+ or CD44highCD24–/low CSCs, and induced CSC potential in ALDH– or CD44lowCD24high non-CSCs. Upon detachment, both CD147 expression and CyPA secretion were enhanced, and CyPA-CD147 activation mediated detachment induced CSC potential in non-CSCs via STAT3 signaling. Clinically, CD147 and pSTAT3 were highly co-expressed and correlated with poor overall survival and tumor recurrence in breast cancer patients. Conclusion: This study demonstrates that detachment induces the generation of CSCs from non-stem breast cancer cells via CyPA-CD147 signaling, indicating that targeting CD147 may serve as a potential novel therapeutic strategy for lethal metastatic breast cancer by eliminating induced CSCs.National Basic Research Program (#2015CB553700)National Science and Technology Major Project (#2015ZX09501-009)National Natural Science Foundation of China (#31571469 and #81872349

    Stem signatures associating SOX2 antibody helps to define diagnosis and prognosis prediction with esophageal cancer

    Get PDF
    Background: esophageal cancer is one of the deadliest diseases worldwide. Due to the ineffectual screening methods referring to early diagnosis, most people have lost their chance of radical resection when diagnosed with esophageal cancer. This aim of this study was designed to evaluate the latent values of the stem signatures-associated autoantibodies (AABS) in predicting the early diagnosis, and particularly seeking the precise predictive outcomes with sensitive SOX2. We also studied the potential immunotherapeutic targets and prospective long-term prognosis predicators of esophageal cancer. Methods: The serum concentrations of selective antibodies were quantitated by enzyme-linked immunosorbent assay (ELISA), and a total of 203 local cases were enrolled. The TCGA databases were used to analyse distinct expression patterns and prognostic values of related genes. The TIMER database was used to explore the signatures of immune cell infiltration in related genes. The TISIDB database was used to analyse the association between related genes and immune regulators. Results: The stem signatures-associated with antibodies of TP53, PGP9.5, SOX2, and CAGE were highly expressed in esophageal cancer and were negatively correlated with the test group, the diagnostic sensitivity of P53, SOX2, PGP9.5 and CAGE reached to 54.3%, 56.5%, 80.4% and 47.8%, respectively, and the specificity reached 77.7%, 93.6%, 76.4% and 86.6%. Especially in stage I esophageal cancer, the diagnostic sensitivity of SOX2 reached 82.4% with a specificity of 85.4%, which demonstrated good value in early diagnosis. Conclusions: The stem signatures-associated antibodies could be used as an effective indicator in early esophageal cancer diagnosis and could help to precisely predicate survival and prognosis.Key MessagesThe stem signatures-associated immune-antibodies could be used as effective indicators in early diagnosis of esophageal cancer and help to precisely predicate the survival and prognosis.The potential immunotherapeutic targets referring to esophageal cancer are screened and analysed, and the high sensitivity of SOX2 in detecting early esophageal cancer will yield early and effective treatments

    Role of macrophages in pulmonary arterial hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular disease characterized by progressive pulmonary artery pressure elevation, increased pulmonary vascular resistance and ultimately right heart failure. Studies have demonstrated the involvement of multiple immune cells in the development of PAH in patients with PAH and in experimental PAH. Among them, macrophages, as the predominant inflammatory cells infiltrating around PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2 phenotypes, they accelerate the process of PAH by secreting various chemokines and growth factors (CX3CR1, PDGF). In this review we summarize the mechanisms of immune cell action in PAH, as well as the key factors that regulate the polarization of macrophages in different directions and their functional changes after polarization. We also summarize the effects of different microenvironments on macrophages in PAH. The insight into the interactions between macrophages and other cells, chemokines and growth factors may provide important clues for the development of new, safe and effective immune-targeted therapies for PAH
    corecore