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Tianjin, China, 3 State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital,
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Acute gut graft-versus-host disease (aGVHD) is a leading threat to the survival of
allogeneic hematopoietic stem cell transplantation (allo-HSCT) recipients. Abnormal
gut microbiota is correlated with poor prognosis in allo-HSCT recipients. A disrupted
intestinal microenvironment exacerbates dysbiosis in GVHD patients. We hypothesized
that maintaining the integrity of the intestinal barrier may protect gut microbiota and
attenuate aGVHD. This hypothesis was tested in a murine aGVHD model and an
in vitro intestinal epithelial culture. Millipore cytokine array was utilized to determine the
expression of proinflammatory cytokines in the serum. The 16S rRNA sequencing was
used to determine the abundance and diversity of gut microbiota. Combining Xuebijing
injection (XBJ) with a reduced dose of cyclosporine A (CsA) is superior to CsA alone in
improving the survival of aGVHD mice and delayed aGVHD progression. This regimen
also reduced interleukin 6 (IL-6) and IL-12 levels in the peripheral blood. 16S rRNA
analysis revealed the combination treatment protected gut microbiota in aGVHD mice by
reversing the dysbiosis at the phylum, genus, and species level. It inhibited enterococcal
expansion, a hallmark of GVHD progression. It inhibited enterococcal expansion, a
hallmark of GVHD progression. Furthermore, Escherichia coli expansion was inhibited
by this regimen. Pathology analysis revealed that the combination treatment improved
the integrity of the intestinal tissue of aGVHD mice. It also reduced the intestinal
permeability in aGVHD mice. Besides, XBJ ameliorated doxorubicin-induced intestinal
epithelial death in CCK-8 assay. Overall, combining XBJ with CsA protected the intestinal
microenvironment to prevent aGVHD. Our findings suggested that protecting the
intestinal microenvironment could be a novel strategy to manage aGVHD. Combining
XBJ with CsA may reduce the side effects of current aGVHD prevention regimens and
improve the quality of life of allo-HSCT recipients.

Keywords: acute graft vs. host disease, Xuebijing injection, gut microbiota, allogenic hematopoietic
transplantation, cyclosporine A, integrative medicine, biomarkers, Chinese medicine
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GRAPHICAL ABSTRACT | Combination treatment with XBJ and CsA
alleviates acute GVHD by protecting the intestinal microenvironment.

HIGHLIGHTS

- Combining XBJ with CsA was superior to either CsA
or XBJ alone in improving survival and protecting gut
microbiota in aGVHD mice.

- Combining XBJ with CsA prevented E. coli and enterococcal
expansion to ameliorate aGVHD.

- Protecting the intestinal microenvironment is a promising
strategy to manage aGVHD.

INTRODUCTION

Preventing acute graft-versus-host disease (aGVHD) saves lives
and improves the quality of life of allogeneic hematopoietic
stem cell transplantation (allo-HSCT) recipients. As a major
target organ of aGVHD, the integrity of the gastrointestinal
(GI) tract influences the severity and progression of aGVHD
(Hill and Ferrara, 2000; Shono and van den Brink, 2018).
Gut microbiota also modulates GVHD and risks of infection
in allo-HSCT recipients (Shono and van den Brink, 2018;
Stein-Thoeringer et al., 2019).

Tissue injuries induced by conditioning regimens contribute
to the initiation of gut GVHD. In addition, cytokine storms
and activated donor-derived cytotoxic T cells worsen gut GVHD
(Al-Homsi et al., 2015). Gut microbiota plays an important
role in the pathophysiology of GVHD (Shono and van den
Brink, 2018). Loss of diversity in gut microbiota is correlated
with decreased survival of allo-HSCT recipients (Jenq et al.,
2012; Stein-Thoeringer et al., 2019). Increased abundance of
Enterococcus spp. is correlated with poor clinical outcomes in
allo-HSCT recipients (Taur et al., 2012; Holler et al., 2014;
Stein-Thoeringer et al., 2019). Fatal Escherichia coli infections
threaten the survival of patients (DeFilipp et al., 2019). In

Abbreviations: XBJ, Xuebijing injection; CsA, cyclosporine A; aGVHD,
acute graft-versus-host disease; allo-HSCT, allogeneic hematopoietic stem cell
transplantation; FMT, fecal microbial transplantation; GI, gastrointestinal.

contrast, butyrate-producing Clostridia, which increased the
presence of regulatory T cells (Tregs) in the intestine, are believed
to be protective in GVHD development (Shono and van den
Brink, 2018; Kumari et al., 2019). Clinical research showed
that manipulating gut microbiota [including fecal microbial
transplantation (FMT)] may benefit aGVHD patients suffering
from gut GVHD (Qi et al., 2018; Fredricks, 2019). Because
it is impractical to maintain a decontaminated intestine in
allo-HSCT recipients, optimizing gut microbiota becomes a
preferred strategy to prevent aGVHD (DeFilipp et al., 2019;
Fredricks, 2019).

Intestinal epithelial cells play a cardinal role in maintaining
intestinal microenvironment (Artis, 2008). Disrupting intestinal
epithelial cells alters the structure of gut microbiota (Kumar
et al., 2016; Xiao et al., 2019). The insults of transplant
conditioning regimen and aGVHD compromise the integrity
of the intestinal microenvironment, which partially contributes
to dysbiosis in aGVHD patients (Hanash et al., 2012;
Rafei and Jenq, 2020).

Xuebijing injection (XBJ) is a China Food and Drug
Administration-approved Chinese medicine injection that
contains extracts from five different medicinal herbs [Honghua
(Carthamus tinctorius flowers), Chishao (Paeonia lactiflora
roots), Chuanxiong (Ligusticum chuanxiong rhizomes), Danggui
(Angelica sinensis roots), and Danshen (Salvia miltiorrhiza
roots)] (Jiang et al., 2013; Zhang et al., 2018). It has been used in
China to treat multiple organ dysfunction syndromes and sepsis
as an add-on to conventional treatments for over a decade (Chen
G. et al., 2018; Lyu et al., 2018; Zhang et al., 2018; Zuo et al., 2018;
Li et al., 2019). XBJ’s unique feature of cell and organ protection
has been revealed by a series of studies (Wang et al., 2007; Li
et al., 2014; Xu et al., 2017; Chen X. et al., 2018; Shang et al.,
2019). The herbs in XBJ were commonly used to treat different
types of human diseases related to organ injuries (Han et al.,
2017). Besides, key compounds in XBJ, such as hydroxysafflor
yellow A, paeoniflorin, danshensu, salvianolic acid A (SAA), and
salvianolic acid B have been shown to protect different organs
in various disease models (Liu et al., 2008; Jiang et al., 2014; Hu
et al., 2016; Han et al., 2017; Zhu et al., 2018; Shang et al., 2019).
However, whether compound Chinese medicine can protect the
GI tract to attenuate gut GVHD remains an open question.

In our previous study, we found that a combination of
cyclosporine A (CsA) and XBJ is safe and effective in a
murine aGVHD model (Lyu et al., 2018). We hypothesized
that maintaining the integrity of the intestinal barrier protects
gut microbiota and attenuates aGVHD. The influences of an
optimized combination regimen of XBJ and CsA on GVHD
progression, cytokine production, the barrier function of the
intestinal epithelial cells, and the structure of gut microbiota in
an aGVHD model were evaluated in this study.

MATERIALS AND METHODS

Chemicals and Reagents
Xuebijing injections (catalog no. z20039833, batch no. 1708221)
were purchased from Tianjin Chase Sun Pharmaceutical Co., Ltd.
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(Tianjin, China). This Chinese medicine is approved by the
China Food and Drug Administration (CFDA) for treating
sepsis and septic shock (CFDA ratification no. Z20039833). It
is routinely used as an add-on to conventional therapy to treat
sepsis and septic shock in China (Jiang et al., 2013; Chen X.
et al., 2018). This injection contains extracts of five herbs. Each
milliliter of Xuebijing is prepared from a combination of 0.1 g
each of Honghua (C. tinctorius flowers), Chishao (P. lactiflora
Pall. roots), Chuanxiong (L. chuanxiong rhizomes), Danggui
(A. sinensis roots), and Danshen (S. miltiorrhiza roots) (Zhang
et al., 2018). Methods of extraction, preparation, and quality
control of XBJ were the same as reported previously (Huang et al.,
2011; Cheng et al., 2016).

All chemicals used in the experiments were purchased from
Sigma-Aldrich (St. Louis, MO, United States) unless specifically
indicated. Cytokine detection kit, MILLIPLEX MAP Mouse Th17
Magnetic Bead Panel was ordered from the Merck Millipore
Corporation (Billerica, MA, United States). CsA (cat#: SV375)
was purchased from Novartis Pharma Stein AG company
(Stein, Switzerland).

Experimental Animals
This study was carried out following the recommendations of
the Guide for the Care and Use of Laboratory Animals (NIH
publication no. 85–23, revised 1996, United States) and the
guidelines of Tianjin University of Traditional Chinese Medicine
Animal Research Committee. The protocol was approved by
the Tianjin University of Traditional Chinese Medicine Animal
Research Committee (TCM-LAE-20170016).

All transplantation experiments were performed with weight-
matched (22–24 g) and sex-matched (male) 10-week-old BALB/c,
and C57BL/6 mice were purchased from Vital River Company
(Beijing, China). Mice were acclimated to the standard germ-free
housing room under an ambient temperature of 23◦C ± 2◦C and
40%–60% relative humidity, with a diurnal cycle of 12-h light and
12-h dark at the animal facility for 1 week before experiments.
They were provided with a normal diet and water daily for the
duration of experiments.

aGVHD Model and Bone Marrow
Transplantation
A murine aGVHD model was recapitulated following the
established protocol, and bone marrow (BM) transplantations
were performed as described (Cheng et al., 2013; Al-Homsi
et al., 2017b). Briefly, BM cells were gently released from the
femurs and tibias of donor C57BL/6 mice and suspended in
phosphate-buffered saline (PBS; Fisher Scientific, Waltham, MA,
United States). Cell suspensions were then filtered through
a 70-µm filter and washed with PBS to obtain particulate-
free, single-cell suspensions. GVHD inocula were obtained by
gently crushing the spleens of C57BL/6 mice. Splenocytes were
then filtered using a 70-µm filter and washed with PBS. Cell
counts were performed on hemocytometers. Recipient BALB/c
mice were subjected to total body irradiation the day before
transplant (day −1). Mice received 8.5 Gy irradiation (two
fractions, 3 h apart) via a Rad Source RS-2000 irradiator

(San Diego, CA, United States). Irradiated mice received donor
BM (5 × 106 cells) with or without splenocytes (1 × 107

cells) by tail-vein injections on day 0. Mice transplanted with
BM cells only were used as no GVHD control. Mice receiving
BM and splenocytes were randomly divided into following
groups: GVHD group (treated with 0.9% NaCl), CsA-treated
group [receiving CsA (5 mg/kg, intraperitoneally) alone], XBJ-
treated group (0.2 mL/kg, subcutaneously) alone, and combo-
treated group (both CsA 2.5 mg/kg, intraperitoneally) and XBJ
(0.5 mL/kg, subcutaneously) at the indicated time points. Mice
were monitored for weight and scored for GVHD three times
weekly. GVHD scoring was based on weight loss, posture,
activity, fur texture, skin integrity, and diarrhea and gut
injury (severity score 0–2 for each variable, maximum index
12). Animals were euthanized if they lost >35% of their
initial weight or reached a score ≥ 7. The experiments were
terminated on day 30.

Ethics Statement
The institutional animal ethics committee approved this study
design. Given the severity of our study, we diligently observed
all mice to minimize suffering within the frames of the
experimental design. All mice in the study were housed in the
pathogen-free animal facility, and the overall health status was
checked by trained professionals at least two times per day
whenever an animal’s condition deteriorated (defined by, among
other parameters, decreased activity, progressing hypothermia,
rapid weight loss). In detail, mice were euthanized upon
signs of impending decease (i.e., inability to maintain upright
position/ataxia/tremor and prolonged/deep hypothermia and/or
agonal breathing) by cervical dislocation.

Cytokine Array
Serum samples were collected as described (Al-Homsi et al.,
2017a,b). Serum cytokines were measured using the MILLIPLEX
multifactor detection technique to simultaneously analyze
four inflammatory cytokines. MILLIPLEX MAP Mouse Th17
Magnetic Bead Panel kit (Merck Millipore, Billerica, MA,
United States) was used for sample preparations as described (Al-
Homsi et al., 2017a,b). The expression of inflammatory factors
interleukin 6 (IL-6), IL-12 (P70), IL-23, and tumor necrosis factor
α (TNF-α) was detected with a BIO-RAD liquid chip device
(Bio-Plex 200 system) (Hercules, CA, United States).

Fecal Sample Collection and Genomic
DNA Extraction
The feces of the experimental mice were obtained in a sterile clean
bench. Fresh stool samples from six different mice in each group
were collected in sterile tubes and frozen at −80◦C. The genomic
DNA of the samples was extracted by the CTAB/SDS method
[Clark MS (1997) Plant Molecular Biology: A Laboratory Manual.
Springer], and then the purity and concentration of the DNA
were detected by agarose gel electrophoresis. The genomic DNA
was diluted to 1 ng/µL with sterile water and used as a template
for polymerase chain reaction (PCR) (Novogene, Beijing, China).
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16S rRNA PCR and Sequencing
Amplicon Generation
16S rRNA genes of distinct regions were amplified using specific
primers with the barcode. All PCR reactions were carried out with
Phusion High-Fidelity PCR Master Mix (New England Biolabs,
Ipswich, MA, United States).

PCR Products Mixing and Purification
Polymerase chain reaction products were mixed with the
same volume of 1 × loading buffer (contained SYB green)
and separated by electrophoresis on 2% agarose gel. PCR
products were mixed in equidensity ratios. Then, mixture PCR
products were purified with GeneJET Gel Extraction Kit (Thermo
Scientific, United States).

Library Preparation and Sequencing
Sequencing libraries were generated using Ion Plus Fragment
Library Kit 48 rxns (Thermo Scientific) following manufacturer’s
recommendations. The library quality was assessed on the
Qubit@ 2.0 Fluorometer (Thermo Scientific). The library was
sequenced on an Ion S5TM XL platform, and 400-bp/600-bp
single-end reads were generated.

Data Analysis
Single-End Reads Quality Control
Single-end reads were assigned to samples based on their unique
barcode and were truncated by cutting off the barcode and primer
sequence. The raw reads were performed under specific filtering
conditions to obtain the high-quality clean reads according
to the Cutadapt (V1.9.11) quality-controlled process (Martin,
2011). Afterward, the reads were compared with the reference
database (Silva databasefigurehttps://www.arb-silva.de/) (Quast
et al., 2013) using UCHIME algorithm (UCHIME Algorithm2)
(Edgar et al., 2011) to detect chimera sequences, and then the
chimera sequences were removed to obtain the clean reads
(Haas et al., 2011).

Operational Taxonomic Unit Cluster and Species
Annotation
Sequences analysis was performed with Uparse software (Uparse
v7.0.10013) (Edgar, 2013). Sequences with ≥97% similarity were
assigned to the same operational taxonomic units (OTUs).
Representative sequences for each OTU were screened for further
species annotation in the Silva Database (version 132) (see text
footnote 2) (Quast et al., 2013) based on the Mothur algorithm
to annotate taxonomic information. In order to study the
phylogenetic relationship of different OTUs, and the difference
of the dominant species in different samples (groups), multiple
sequence alignment was conducted using the MUSCLE software
(version 3.8.314) (Edgar, 2004). OTU abundance information was
normalized using a standard of sequence number corresponding
to the sample with the least sequences. Subsequent analyses of

1http://cutadapt.readthedocs.io/en/stable/
2http://www.drive5.com/usearch/manual/uchime_algo.html
3http://drive5.com/uparse/
4http://www.drive5.com/muscle/

alpha diversity and beta diversity were all performed basing on
this output normalized data.

Alpha Diversity
Alpha diversity is applied in analyzing the complexity of species
diversity for a sample through six indices, including observed-
species, Chao1, Shannon, Simpson, ACE, and Good’s coverage.
All these indices in our samples were calculated with QIIME
(version 1.7.0) and displayed with R software (version 2.15.3).
Two indices were selected to identify community richness:
Chao—the Chao1 estimator5; ACE—the ACE estimator6; two
indices were used to identify community diversity: Shannon—
the Shannon index7; Simpson—the Simpson index8; one index to
characterized sequencing depth: coverage—the Good’s coverage9.

Beta Diversity
Beta diversity analysis was used to evaluate differences of samples
in species complexity, Beta diversity on both weighted and
unweighted UniFrac was calculated by QIIME software (version
1.7.0). Cluster analysis was preceded by principal component
analysis, which was applied to reduce the dimension of the
original variables using the FactoMineR package and ggplot2
package in R software (version 2.15.3). Principal coordinate
analysis (PCoA) was performed to get principal coordinates
and visualize from complex, multidimensional data. A distance
matrix of weighted or unweighted UniFrac among samples
obtained before was transformed to a new set of orthogonal
axes, by which the maximum variation factor is demonstrated
by the first principal coordinate, and the second maximum one
by the second principal coordinate, and so on. PCoA analysis
was displayed by the WGCNA package, stat packages and
ggplot2 package in R software (version 2.15.3). Unweighted Pair-
Group Method with Arithmetic (UPGMA) means clustering was
performed as a type of hierarchical clustering method to interpret
the distance matrix using average linkage and was conducted by
QIIME software (version 1.7.0).

Hematoxylin–Eosin Staining
The colon tissues obtained from the GVHD and treated groups
of mice were fixed in the 10% neutral-buffered formalin and then
embedded in paraffin. Subsequently, 5-µm paraffin sections were
processed to perform hematoxylin–eosin staining as described
before mounting with Pertex (Cui et al., 2017; Chen X. et al.,
2018). Colonic mucosa damage scores in different groups of mice
were assessed as described (Li et al., 2020).

Cell Survival Assay
The CCK-8 assay was conducted to evaluate the survival of
Caco-2 cells upon doxorubicin and XBJ treatment as described
(Chen X. et al., 2018).

5http://www.mothur.org/wiki/Chao
6http://www.mothur.org/wiki/Ace
7http://www.mothur.org/wiki/Shannon
8http://www.mothur.org/wiki/Simpson
9http://www.mothur.org/wiki/Coverage
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Intestinal Permeability Assay
The assay was conducted as described with modifications (Wu
et al., 2019). In brief, intestinal permeability was assessed in vivo
following oral administration of fluorescein isothiocyanate
(FITC)–dextran (7 kDa; Sigma). On day 7, mice were orally
gavaged with FITC–dextran (10 mg/20 g). Four hours later,
whole blood was obtained by cardiac puncture and centrifuged
at 3,500 rpm (1,500 × g) for 10 min. Serum was diluted with PBS
in 1:1, and fluorescence intensity was measured using excitation
at 490 nm and emission at 520 nm with a Tecan microplate
reader (Tecan Trading AG, Männedorf, Switzerland). The serum
from mice that did not receive FITC–dextran was used as the
negative control.

Statistical Analysis
The log–rank test was used to determine the statistical
significance of Kaplan–Meier survival curves. Other results were
analyzed by t or analysis of variance test as appropriate, using
InStat version 3.06 software for Windows (GraphPad, San Diego,
CA, United States). The following terminology was used to show
statistical significance: ∗P < 0.05, ∗∗P < 0.01, and ∗∗∗P < 0.001.

RESULTS

An Optimized Combination Regimen
Improved Outcomes in aGVHD Mice
In our previous study, 0.2 mL/kg XBJ was identified as the
optimal dose of XBJ to prevent/treat GVHD mice individually
(Lyu et al., 2018). However, combining 0.2 mL/kg XBJ with
5 mg/kg CsA showed no survival advantage comparing to CsA
alone (Lyu et al., 2018). These results triggered us to test different
combinations of XBJ and CsA in the murine aGVHD model,
aiming to improve the outcome of the combination regimen.
The drugs were administered in a new schedule (starting on
day 3), and the dosages of XBJ and CsA were also optimized
(Figures 1A,B). Combining 0.5 mL/kg XBJ with 2.5 mg/kg
CsA (Combo) was superior to other combinations of the two
agents (data not shown). We also found that starting the
drug administration on day 3 after allo-HSCT yielded better
results than administering the regimens on day 1. Interestingly,
combining 0.5 mL/kg XBJ with 2.5 mg/kg CsA was superior to
5 mg/kg CsA or 0.2 mL/kg XBJ alone in improving the survival
and the GVHD score of GVHD mice (Figures 1B,C). However,
the treatments did not significantly impact the bodyweight of
GVHD mice (Figure 1D).

Combining XBJ and CsA Influenced the
Expression of Inflammatory Cytokines in
aGVHD Mice
We also determined the effects of different treatments on the
expression of inflammatory cytokines in aGVHD mice. CsA
significantly inhibited the expression of IL-6, IL-12p70, and IL-
23 (Figures 2A–C). The combination regimen showed similar
effects on cytokine expression as the CsA treatment group
(Figures 2A–C). The expression of TNF was not significantly
impacted by XBJ or CsA (Figure 2D).

XBJ and CsA Attenuated Dysbiosis in
aGVHD Mice
To determine how the combination treatment may impact the
progression of aGVHD, 16S rRNA sequencing was conducted
to evaluate the abundance of gut microbiota in different groups
of mice on day 7 after the transplantation. aGVHD caused
persistent dysbiosis at day 7, and the combination treatment
effectively attenuated these changes. Shannon and Simpson’s
diversity index revealed significant differences between the
combo group (2.5 mg/kg CsA-treated and 0.5 ml/kg XBJ-treated
groups) and the GVHD group (Figures 3A,B). PCoA was used
to further determine the influence of the different treatments on
the gut microbiota profiles in aGVHD mice. The gut bacterial
composition profile of aGVHD mice changed substantially on
day 7 after allo-HSCT, and this change was inhibited by the
combo treatment (p = 0.006). In contrast, the combo-treated
group showed similar gut microbiota profiles as the no-GVHD
group (ATCON group) and untransplanted groups (BT group)
(Figure 3C). There was no significant difference between the no-
GVHD group (ATCON) and the combo-treated group in analysis
of similarities (p = 0.078).

Combination Treatment Reversed
Abnormal Gut Microbiota in aGVHD Mice
at the Phylum Level
We analyzed the impact of the treatments on the gut microbiota
of aGVHD mice at the phylum level. Irradiation exposure
and aGVHD drastically disturbed the relative abundance of
intestinal flora at the phylum level (Figure 4A). The combo
treatment partially reversed the abnormality in aGVHD mice,
comparing with the no-GVHD groups (Figure 4A). Irradiation
exposure and aGVHD caused a down-regulation of the relative
abundance of Bacteroidetes (or Firmicutes) and an increase of
Proteobacteria at the phylum level in aGVHD mice at day 7. The
combo treatment reversed these changes (Figures 4A,B). Venn
analysis revealed that combo treatment changed the composition
of OTUs in the phylum of Bacteroidetes and Proteobacteria
in aGVHD mice (Figures 4C,D). Importantly, the relative
abundances of the two phyla were also normalized by the
combo treatment in MetaStat analysis comparing to GVHD
mice (Figures 4E,F). Together, these results demonstrated that
the combo treatment preserves the gut bacterial composition
in aGVHD mice.

Combining XBJ With CsA Normalized
Gut Microbiota of aGVHD Mice at the
Genus Level
Next, we analyzed the 16S rRNA sequencing results at
the genus level to determine the influence of different
treatments on the gut microbiota of aGVHD mice. We
found the combo treatment altered the relative abundances
of the top 35 genera, comparing with GVHD, CsA-
treated, and XBJ-treated groups. The overall abundance
of the top 35 genera in the combo group was similar
to the no-GVHD groups comparing to CsA- and XBJ-
treated group. Enterococcus, a biomarker of GVHD, was
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FIGURE 1 | An optimized combination regimen was superior to CsA and XBJ alone in preventing murine aGVHD. (A) Experimental scheme. (B) Kaplan–Meier
survival analysis of the survival in different groups of mice. The log–rank test was performed between different treatment groups and the treatment groups with the
GVHD group. The survival rate of each group at day 14 was as follows: control (no GVHD) group: 100%; XBJ and CsA group: 80%; XBJ group: 57.9%; CsA group:
45.4%; GVHD group: 36.8%. (C) GVHD scores of different groups of mice. (D) Body weight changes after the transplant in different groups of mice. **P < 0.01,
***P < 0.001, GVHD vs. control; #P < 0.05, ##P < 0.01, ###P < 0.001, treatment groups vs. GVHD (n ≥ 13).

FIGURE 2 | Effects of different treatments on inflammatory cytokines in GVHD mice. On the seventh day after transplantation, serum from different groups of mice
was collected and subjected to cytokine array analysis. Statistical analysis of IL-6 (A), IL-12(p70) (B), IL-23 (C), and TNF-α (D) was presented. *The significant
difference between control and GVHD groups; #the significant difference between each treatment group and the GVHD group. **P < 0.01, #P < 0.05, ##P < 0.01.
n = 4–6/group.
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FIGURE 3 | Combination treatment normalized gut microbiota of aGVHD mice. (A) Shannon index of alpha diversity was examined by 16S high-throughput
sequencing on day 7 in the GVHD, control, and different treatment groups. n = 4–6/group. Statistical significances are indicated: The Wilcoxon rank-sum test. The
top and bottom boundaries of each box indicate the 75th and 25th quartile values, respectively, and lines within each box represent the 50th quartile (median)
values. Ends of whiskers mark the lowest and highest diversity values in each instance. (B) Simpson index of alpha diversity was examined by 16S high-throughput
sequencing on day 8 in GVHD, control, and different treatment groups. n = 4–6/group. (C) Weighted UniFrac-based principal coordinates analysis (PCoA). The
principal component was used to measure the shift of the intestinal bacterial composition structure in different groups of mice after BM transplantation at day 8.
n = 4–6/group. BT, samples from mice without BM transplantation; ATCON, samples from BALB/c mice transplanted with BM from C57 donors only; ATGVHD,
samples from BALB/c mice transplanted with BM and splenocytes from C57 donors; ATCSA, samples from BALB/c mice transplanted with BM and splenocytes
from C57 donors treated with 5 mg/kg CsA; AT0.2X, samples from BALB/c mice transplanted with BM and splenocytes from C57 donors treated with 0.2 mL/kg
XBJ; ATCOM, samples from BALB/c mice transplanted with BM and splenocytes from C57 donors treated with 2.5 mg/kg CsA and 0.5 mL/kg XBJ. ∗,∗∗Compared
with aGVHD group.

FIGURE 4 | The combination of XBJ and CsA reversed the dysbiosis at the phylum level in GVHD mice. (A) The cluster heat map of the abundance of gut microbiota
at the phylum level in different groups of mice. The alteration of intestinal bacterial patterns at the phylum level in different groups of mice was assessed using 16S
high-throughput sequencing after BMT on day 7, n = 4–6/group. The heat map is color-based on row Z scores. The mice with the highest and lowest bacterial level
are in red and blue, respectively. (B) Unweighted Pair-Group Method with Arithmetic (UPGMA) mean tree based on weighted UniFrac at the phylum level. The relative
abundances of enteric bacteria at the phylum level in different groups of mice were assessed using 16S high-throughput sequencing after BMT on day 7.
n = 4–6/group. The proportion of relative abundance of Bacteroidetes and Proteobacteria was decreased in aGVHD mice compared to control mice, and the
combination treatment reversed this change. (C) OTU-based Venn graph in Bacteroidetes of different groups. The number of OTUs in the phylum of Bacteroidetes in
different groups was analyzed using 16S high-throughput sequencing after BMT at day 7. n = 4–6/group. (D) OTU-based Venn graph in Proteobacteria of different
groups. The number of OTUs in the phylum of Proteobacteria in different groups was analyzed using 16S high-throughput sequencing after BMT on day 7.
n = 4–6/group. (E) MetaStat analysis of Bacteroidetes in different groups to evaluate the influences of treatments on the relative abundance. All values are
mean ± SEM (n = 4–6/group). *Adjusted p < 0.05, **adjusted p < 0.01. (F) MetaStat analysis of Proteobacteria of different groups to evaluate the influences of
treatments on the relative abundance of Bacteroidetes. All values are mean ± SEM (n = 4–6/group). *Adjusted p < 0.05, **adjusted p < 0.01.
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FIGURE 5 | Combination therapy rescued the disordered gut microbiota in GVHD mice at the genus level. (A) Cluster heat map of relative abundance of gut
microbiota at the genus level in different groups of mice. The alteration of intestinal bacterial patterns at the genus level in different groups of mice was assessed
using 16S high-throughput sequencing after BMT at day 7, n = 4–6/group. The heat map is color-based on row Z scores. The mice with the highest and lowest
bacterial level are in red and blue, respectively. (B) The UPGMA tree based on weighted UniFrac distances in the genus level. The relative abundances of enteric
bacteria at the genus level in different groups of mice were assessed using 16S high-throughput sequencing after BMT on day 7. n = 4–6/group. (C) Classification of
the top 100 genera in the abundance of the gut microbiota and the dominant genera in different groups of mice. Dominant genera in different groups of mice were
marked with indicated colors. Bar lengths indicated the abundance of the genus in different groups of mice.

reversed by the combo treatment to a similar level as
those in no-GVHD (ATCON) and non-transplanted (BT)
mice (Figure 5A). Other genera, such as Akkermansia,

Bacteroides, Parasutterella, and unidentified Clostridiales,
were also normalized to the level of no-GVHD and
non-transplanted mice.
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TABLE 1 | The influences of different treatments on the gut microbiota of aGVHD
mice on genus/species level.

Effect Genus/Species CSA 0.2X COM

Up-regulated Alistipes – P < 0.01 P < 0.01

(UR) – P < 0.05 P < 0.05

Down-regulated (UE) – – P < 0.01

Enterococcus – P < 0.05 P < 0.05

Escherichia coli – – P < 0.01

Enterococcus durans – P < 0.05 P < 0.05

The UPGMA tree analysis revealed the relative abundances of
unidentified Enterobacteriaceae, unidentified Ruminococcaceae,
and Alistipes were significantly decreased in aGVHD mice
compared to control mice. Enterococcal expansion is a
hallmark of dysbiosis in aGVHD (Stein-Thoeringer et al.,
2019). Of note, significant enterococcal expansion in aGVHD
mice was also unveiled in this study (Figures 5A,B). The
combination treatment reversed all these changes (Figure 5B and
Table 1). Four genera were identified as potential biomarkers
in aGVHD mice that were influenced by the combo treatment,
including Alistipes, unidentified Enterobacteriaceae, unidentified
Ruminococcaceae, and Enterococcus (Figure 5C, Supplementary
Figure 3, and Table 1).

Treatment With XBJ and CsA Normalized
the Abundance of Enterococcus durans
and E. coli in aGVHD Mice
We further analyzed how the combo treatment impacts gut
microbiota on species level in GVHD mice. E. coli and
Enterococcus durans were normally in low abundance in non-
transplanted and no-GVHD mice. However, they became the
top two species in relative abundance (among the top 10 high
abundance species) in GVHD mice (Figure 6A). The combo
treatment reversed the expansion of both species in GVHD
mice (Figures 6A,B).

The relative abundance of Clostridium papyrosolvens was
significantly decreased in aGVHD mice. The Combo treatment
reversed this abnormality (Figure 6B). Notably, the combo, BT,
and ATCON groups were separated from the aGVHD group
and the CsA group in the hierarchical cluster tree analysis
(Figure 6A). These results were also confirmed by comparing
the relative abundances of the top 35 species among different
groups (Figure 6B). The combo treatment dramatically reduced
the abundance of E. durans and E. coli. LDA effect size (LEfSe)
analysis revealed that the combo group vs. GVHD had similar
biomarkers as the no-GVHD group vs. GVHD group (Figures
6D,E,J). In contrast, the CsA-treated group vs. GVHD and XBJ
vs. GVHD group showed different sets of biomarkers on the
species level (Figures 6F–I).

XBJ Protected Intestinal Tissue in
aGVHD Mice
We further analyzed the histology of the intestine in different
groups of mice. The combo-treated group showed relative normal

villi morphology, comparing with the GVHD group, which
showed reduced numbers of villi (Figures 7A–E), indicating
XBJ may protect the intestines of aGVHD mice. Consistently,
intestinal permeability assay revealed that combo treatment
reduced intestinal permeability of aGVHD mice, indicating XBJ
may improve the integrity of intestinal tissue (Figure 8A). To
determine whether XBJ exerted tissue protection in the intestine,
Caco-2 cells were treated with doxorubicin at the presence and
absence of XBJ. XBJ improved the survival of Caco-2 cells in the
CCK-8 assay, suggesting XBJ can attenuate intestinal injuries in
aGVHD mice (Figures 8B,C).

DISCUSSION

Highlights of This Study
We found that combining XBJ with the reduced dose of CsA
is superior to CsA alone in preventing aGVHD. It reduced
proinflammatory cytokine production and protected the gut
microbiota of aGVHD mice. Specifically, combo treatment
reversed E. coli and E. durans expansion in aGVHD mice.
XBJ may protect the intestinal tissue of GVHD mice to
prevent dysbiosis.

Combination Therapy Improved
Outcomes in a Murine aGVHD Model
In our previous work, combining 0.2 mL/kg XBJ with 5 mg/kg
CsA was safe and effective in rescuing mice from lethal
aGVHD. However, there was no significant difference between
the combined regimen and the CsA alone group in the survival
(Lyu et al., 2018). Five milligrams per kilogram CsA was used
as a standard dose for experimental GVHD prevention (Li et al.,
2013; Yuan et al., 2015). Combining different doses of XBJ (from
0.2 to 0.5 mL/kg or higher) with 5 mL/kg CsA did not translate
into better outcomes (data not shown), suggesting 5 mg/kg CsA
may maximize its effect on preventing aGVHD in the mouse
model. We reasoned that adjusting the doses of XBJ and CsA
while shifting the schedule of drug administration may yield a
better outcome. After testing different combinations of XBJ and
CsA at various schedules (data not shown), we found combining
0.5 mL/kg XBJ with 2.5 mg/kg CsA is superior to 5 mg/kg CsA
alone in improving the survival and reversing dysbiosis of gut
microbiota in aGVHD mice. Side effects of CsA compromise
the quality of life in allo-HSCT recipients (Gijtenbeek et al.,
1999; Vitko and Viklicky, 2004). Our results indicated this combo
regimen may reduce the side effects of CsA (such as causing
kidney failure) in the long term.

Potential Mechanisms: Combo
Treatment Limited Proinflammatory
Cytokine Production
Proinflammatory cytokines promote the progression of
aGVHD (Bastian et al., 2019; Zeiser, 2019). IL-6, IL-12,
and IL-23 contribute to the worse outcomes in aGVHD.
Clinical trials exploring targeting IL-12/IL-23 and IL-6
inhibition in prophylaxis and treatment of GVHD are ongoing

Frontiers in Physiology | www.frontiersin.org 9 February 2021 | Volume 11 | Article 608279

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-608279 February 8, 2021 Time: 18:14 # 10

Zhou et al. Protecting Gut Microenvironment Attenuates aGVHD

FIGURE 6 | Combination treatment reversed the dysbiosis in GVHD mice on the species level. (A) The UPGMA tree of the top 10 species in abundance based on
weighted UniFrac distances in the species level. The relative abundances of enteric bacteria at the species level in different groups of mice were assessed using 16S
high-throughput sequencing after BMT on day 7. n = 4–6/group. (B) The statistical analysis of the abundance of top 35 species in gut microbiota between different
groups of mice. n = 4–6/group. The heat map is color-based on row Z scores. The groups with the highest and lowest bacterial level are marked in red and blue,
respectively. The combination treatment significantly down-regulated the relative abundance of E. coli and Enterococcus durans. (C–J) Cladograms (C,E,G,I) and
LDA (linear discriminant analysis) score (D,F,H,J) generated by LEfSe (linear discriminant analysis effect size) indicating differences in bacterial taxa in different groups
of mice 7 days after the BMT. n = 4–6/group. The central point represents the root of the tree (bacteria), and each ring represents the next lower taxonomic level
(from phylum to genus). The diameter of each circle represents the relative abundance of the taxon. Only the taxa meeting a significant LDA threshold value of >2 are
shown. The species in the non-transplant group (ATCON) and the combo treatment group (ATCOM) were indicated with a negative LDA score (D,J). (C,D) LEfSe
analysis of the ATCON vs. the GVHD group. The potential biomarkers of the GVHD group: (1). Proteobacteria, Gammaproteobacteria, Enterobacteriales,
Enterobacteriaceae, unidentified Enterobacteriaceae, E. coli; (2). Firmicutes, Bacilli, Lactobacillales, Enterococcaceae, Enterococcus, E. durans. The potential
biomarkers of the ATCON group: (1). Bacteroidetes, Bacteroidia, Bacteroidales, Rikenellaceae, Alistipes; (2). Firmicutes, Clostridia, Clostridiales, Ruminococcaceae,
unidentified Ruminococcaceae, Clostridium papyrosolvens; (3). Verrucomicrobia, Verrucomicrobiae, Verrucomicrobiales, Akkermansiaceae, Akkermansia. (E,F) The
LEfSe analysis of the GVHD vs. the CSA group. (G,H) The LEfSe analysis of the GVHD vs. the 0.2 mL/kg XBJ-treated group. (I,J) The LEfSe analysis of the GVHD
vs. COM group.

(Tvedt et al., 2017; Hill and Koyama, 2020). The combo
treatment may prevent aGVHD by inhibiting the production of
proinflammatory cytokines in aGVHD mice. Similar to 5 mg/kg
CsA treatment, combining 0.5 mL/kg XBJ with 2.5 mg/kg CsA
reduced serum proinflammatory cytokines (including IL-6,
IL-23, and IL-12) in aGVHD mice, indicating XBJ may play a
role in reducing the production of inflammatory cytokines in
aGVHD mice (Tvedt et al., 2017; Bastian et al., 2019).

Potential Mechanisms: Combo
Treatment Reversed Dysbiosis on
Phylum, Genus, and Species Levels
Increasing evidence suggests gut microbiota plays an important
role in the progression of aGVHD (Shono and van den
Brink, 2018; Fredricks, 2019; Stein-Thoeringer et al., 2019).
Conditioning regimens and activated donor-derived T cells may
damage the GI tract (Al-Homsi et al., 2015; Staffas et al., 2017).

This may lead to dysbiosis in allo-HSCT recipients, which
worsens GVHD. Interventions that restore normal gut
microbiota may serve as a therapeutic option for GI tract
aGVHD (Kakihana et al., 2016; Qi et al., 2018). Preventing the
dysbiosis of gut microbiota in allo-HSCT recipients reduces
the risk of severe GVHD. Our 16S rRNA sequencing results
revealed that combining XBJ with CSA is superior to 5 mg/kg
CSA or XBJ alone in maintaining gut microbiota on phyla,
genera, and species levels. Dominating gut microbiota by
E. coli and Enterococcus were frequently observed in allo-HSCT
recipients (Jenq et al., 2012; Shono and van den Brink, 2018).
The expansion of Enterococcus promotes the progression of
aGVHD in mice (Stein-Thoeringer et al., 2019). Consistent with
the clinical observation, we found that E. coli and E. durans
became the dominant species in aGVHD mice (Figure 6).
However, the combo treatment reversed this phenomenon,
indicating XBJ may maintain the integrity of the GI tract to
protect gut microbiota.
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FIGURE 7 | XBJ protected intestinal tissue in aGVHD mice. Representative hematoxylin–eosin staining of colon tissues in different groups of mice was presented.
(A) No-GVHD control group; (B) GVHD group; (C) 0.2 mL/kg XBJ-treated group; (D) 5 mg/kg CsA-treated group; (E) 0.5 mL/kg XBJ and 2.5 mg/kg CsA-treated
group. Scale = 100 µm. n = 4–6/group.

FIGURE 8 | XBJ maintained the integrity of the gut microenvironment and prevented doxorubicin (DOX)-induced cell death in Caco-2 cells. (A) Gut permeability
assay to determine the influence of the combination therapy on the integrity of the intestine tissue of aGVHD mice. FITC–dextran concentrations (% of aGVHD) in
serum were measured on day 7 after the transplant. Data are means ± SD. Data were analyzed using ordinary one-way analysis of variance for multiple
comparisons. *Control compared with aGVHD, ***P < 0.001; #treatment groups compared with aGVHD; #P < 0.05, ##P < 0.01, ###P < 0.001. (B,C) The CCK-8
assay was used to determine the survival of Caco-2 cells in the presence of doxorubicin and XBJ. (B) Caco-2 cells were pretreated with XBJ as indicated for 24 h
and were then treated with DOX for 12 h before subjecting to CCK-8 assay. (C) Caco-2 cells were treated with DOX for 12 h, and XBJ was added to the indicated
groups for 24 h before subjecting to CCK-8 assay. Each experiment was repeated at least three times. *Control vs. DOX-treated groups; ***P < 0.001; #XBJ-treated
groups vs. DOX-treated group; #P < 0.05, ##P < 0.01, ###P < 0.001.

Clinical and experimental studies showed allo-HSCT results
in the reduced abundance and diversity of gut microbiota in
patients and animal models (Jenq et al., 2012; Taur et al., 2012;
Shono and van den Brink, 2018; Stein-Thoeringer et al., 2019).
Increased abundance of Enterococcus spp. is a poor prognosis
marker of aGVHD. Stein-Thoeringer et al. reported that the
enterococcal expansion in human allo-HSCT recipients was
associated with a significant reduction of survival and increased
GVHD-related mortality in a multicenter and a single-center
clinical study (Stein-Thoeringer et al., 2019). It increased the

possibility of bloodstream infection, which threatens the survival
of allo-HSCT recipients (Taur et al., 2012), compromising
epithelial barrier integrity (Steck et al., 2011) and stimulating
TNF production from macrophages (Kim et al., 2006). Although
E. durans was considered as a low-virulence organism, it
may cause a fatal outcome in patients with advanced diseases
despite optimized antibiotic therapy (Vijayakrishnan and Rapose,
2012). Reversing the expansion of Enterococcus spp. with the
combo treatment partially explained the mechanism of XBJ on
preventing aGVHD.
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The role of E. coli in aGVHD progression remains to be
determined. E. coli may produce indole to prevent GVHD
(Swimm et al., 2018). Eriguchi et al. (2012) found an association
between the expansion of E. coli and worse GVHD in a preclinical
study. Some E. coli strains are pathogenic and can cause lethal
infection (Fukuda et al., 2011; DeFilipp et al., 2019). Overall,
the combo treatment is more effective than CSA alone in
protecting gut microbiota.

Mechanisms of the Combo Treatment on
Gut Microbiota Protection
Improving the integrity of the intestinal tissue is associated with
better outcomes in aGVHD (Joly et al., 2016). GVHD induces
donor T cell-dependent and independent epithelial death in
preclinical models. However, there is no effective intervention to
manage allo-HSCT and GVHD-related epithelial death/intestinal
injuries (Hanash et al., 2012).

We did not detect a significant difference in the gut microbiota
between the 5 mg/kg CsA-treated group and GVHD group on
phylum, genus, and species level in our study (Figures 4B,F, 5B,
6A,B). In contrast, combining XBJ and CsA showed dramatic
impacts on the gut microbiota of GVHD mice. Consistent with
our results, O’Reilly et al. (2020) concluded that CsA at the
clinically relevant doses had negligible direct effects on the
gut microbiota composition ex vivo and in healthy volunteers.
However, Jia et al. (2019) reported that CSA ameliorates hepatic
graft injury and partially restores gut microbiota in a rat
orthotopic liver transplantation model. These differences may
relate to drug delivery and disease models.

Xuebijing injection may directly or indirectly influence the
abundance of gut microbiota in aGVHD mice. Our histological
analysis of colon tissues in different groups of mice indicated that
the combo treatment maintained the morphology of intestine
epithelial cells better than individual agents, suggesting XBJ may
protect the intestine in aGVHD mice to normalize gut microbiota
indirectly (Figure 7). Additionally, the combo treatment reduced
the permeability of the intestine in aGVHD mice (Figure 8A).
XBJ rendered protection to gut epithelial cells in the presence of
doxorubicin in vitro (Figures 8B,C). In our previous study, XBJ
treatment enhanced Treg differentiation in vitro (Chen X. et al.,
2018). The combo treatment may influence the Treg population
in the intestine to protect the intestinal epithelial cells.

Whether XBJ can directly influence the abundance of gut
microbiota is still an open question. Our in vitro culture
experiment revealed that XBJ does not affect bacteria growth
(data not shown), suggesting that the indirect influence of XBJ
on gut microbiota may play a major role in aGVHD mice.

Chinese Medicine in Managing Acute
Gut GVHD
Limited studies were conducted to study the influence of Chinese
medicine injections on gut microbiota. Recent research found
that tail-vein injection of S. miltiorrhiza (Danshen) extract and
salvianolic acid A, a compound in Danshen and XBJ, protected
the intestine in rodent models of gut injuries (Wen et al., 2013;
Wang et al., 2018). Other herbs in XBJ, such as Honghua,
Chuanxiong, and Chishao, showed tissue protection effects in

animal models and clinical studies. Besides, key compounds
in these medical herbs, such as paeoniflorin and gallic acids,
showed similar cell- and tissue-protective effects as the extracts
from the herbs (Zhang et al., 2014; Gu et al., 2017; Zhu et al.,
2019). These results suggested that XBJ maintains the intestinal
microenvironment by protecting the intestinal epithelial barrier.
In our previous study, C0127 (containing four active compounds
in XBJ) simulated the effects of XBJ in preventing systemic
Candida albicans infection and C. albicans-induced kidney
failure (Shang et al., 2019). These four compounds, including
hydroxysafflor yellow A and paeoniflorin, may play a key role in
preventing aGVHD when combining with CsA.

The Potential Advantages of the Combo
Treatment in the Clinic
In the clinic, antibiotics significantly reduced the diversity and
abundance of gut microbiota in allo-HSCT recipients. Reducing
the use of antibiotics while preventing bacteremia/sepsis in allo-
HSCT recipients remains a challenge (Shono and van den Brink,
2018). However, our results indicate that the application of XBJ
in aGVHD prophylaxis may kill two birds with one stone. As a
safe alternative to antibiotics, XBJ may prevent bacteremia/sepsis
while protecting gut microbiota in allo-HSCT recipients (Liu
et al., 2015; Chen X. et al., 2018). Side effects of CsA and resistance
to CsA limited its benefits to allo-HSCT recipients (Gijtenbeek
et al., 1999; Vitko and Viklicky, 2004). Combining XBJ with low-
dose CsA may improve the quality of life by reducing side effects
of CsA and the risk of CsA resistance.

CONCLUSION

In summary, combining XBJ with CsA is superior to CsA alone
in preventing lethal aGVHD. Our limited evidence indicated
that XBJ may protect the epithelial barrier to attenuate aGVHD.
The combo regimen protected gut microbiota and reversed the
abnormal expansion of E. coli and E. durans in the intestine
of aGVHD mice. XBJ may protect intestinal tissue to prevent
dysbiosis. This pilot study provided proof-of-concept evidence
that protecting the intestinal microenvironment may shed light
on the management of acute gut GVHD. However, signaling
pathways regulated by XBJ in gut epithelial cells remain to be
studied. Whether XBJ regulates inflammation to protect organs
is also an open question. The material base of XBJ in protecting
gut microbiota remains to be unrevealed.
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Supplementary Figure 1 | Sequencing depth and species diversity of the 16S
rRNA sequencing. (A) Species accumulation boxplot of samples. With the
increase of sample numbers, observed species gradually increase and finally flat.
(B,C) Rarefaction curve of samples. Sequencing depth reached 60,000–80,000
sequences. (D,E) The rank abundance of samples. The abundance between
species is not much different, and species distribution is uniform in the samples.
n = 4–6/group.

Supplementary Figure 2 | Alpha diversity indexes of different groups the 16S
rRNA sequencing. (A) Observed species index. OTU numbers in aGVHD mice
were significantly decreased. (B) PD whole tree index. Species’ genetic
relationship in aGVHD mice becomes simple. (C) ACE index. (D) Chao1 index.
Panels (C,D) revealed that species numbers were significantly reduced in aGVHD
mice. n = 4–6/group, *p < 0.05, **p < 0.01.

Supplementary Figure 3 | The statistic analysis of the abundance of top 35

genera between different groups of mice. The heat map is color-based on row Z
scores. The highest and lowest bacterial abundance in each genus was marked

with red and blue, respectively. The combination treatment significantly
up-regulated the relative abundance of Alistipes, unidentified Ruminococcaceae,
and Akkermansia. The relative abundance of Enterobacteriaceae and
Enterococcus were down-regulated in mice receiving the combo treatment.
n = 4–6/group.

Supplementary Figure 4 | Histopathological scores of colons in different groups
of mice. n = 4–6/group, *p < 0.05, Control vs aGVHD group; #p < 0.05,
compared with aGVHD group.
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