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Role of macrophages in
pulmonary arterial hypertension

Meng-Qi Zhang1†, Chen-Chen Wang1†, Xiao-Bin Pang1†,
Jun-Zhuo Shi1, Hao-Ran Li1, Xin-Mei Xie1, Zhe Wang1,
Hong-Da Zhang2, Yun-Feng Zhou1, Ji-Wang Chen3,
Zhi-Yan Han2*‡, Lu-Ling Zhao1*‡ and Yang-Yang He1*‡

1School of Pharmacy, Henan University, Kaifeng, Henan, China, 2State Key Laboratory of
Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese
Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 3Department of
Medicine, University of Illinois at Chicago, Chicago, IL, United States
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary vascular

disease characterized by progressive pulmonary artery pressure elevation,

increased pulmonary vascular resistance and ultimately right heart failure.

Studies have demonstrated the involvement of multiple immune cells in the

development of PAH in patients with PAH and in experimental PAH. Among

them, macrophages, as the predominant inflammatory cells infiltrating around

PAH lesions, play a crucial role in exacerbating pulmonary vascular remodeling in

PAH. Macrophages are generally polarized into (classic) M1 and (alternative) M2

phenotypes, they accelerate the process of PAH by secreting various

chemokines and growth factors (CX3CR1, PDGF). In this review we summarize

the mechanisms of immune cell action in PAH, as well as the key factors that

regulate the polarization of macrophages in different directions and their

functional changes after polarization. We also summarize the effects of

different microenvironments on macrophages in PAH. The insight into the

interactions between macrophages and other cells, chemokines and growth

factors may provide important clues for the development of new, safe and

effective immune-targeted therapies for PAH.
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Highlights

• Macrophages play an important role in the PAH process, and imbalance of M1/M2

ratio is a significant feature of aggravating PAH.

• Macrophage recruitment in the perivascular area as a marker of inflammatory

response initiation will be a key factor in exacerbating pulmonary vascular remodeling.
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• Cytokines such as CCR5 and IL-1R1 expressed by both

macrophages and PASMCs can be bi-directionally chemotactic

and stimulate each other, cyclically aggravating the abnormal

proliferation of PASMCs.

• Metabolic disorders and immune cell interactions as well as

viral invasion can lead to alterations in the microenvironment

of macrophages.
1 Introduction

Pulmonary arterial hypertension (PAH) is defined as mean

pulmonary arterial pressure (mPAP) ≥20 mmHg during right heart

catheterization at rest (1). PAH is a chronic progressive

cardiovascular disease caused by the remodeling of pulmonary

vascular structure and progressive pulmonary artery obstruction

(2), which continuously increases pulmonary artery pressure, and

can lead to right heart failure and even death in severe cases. The

pathogenesis of PAH is complex and unclear. In addition to gene

mutations, imbalance of vasoactive substances, immune

inflammatory reaction and abnormal energy metabolism are also

involved in the development of PAH (3). At present, most of the

drugs on the market are for symptomatic treatments (4). Although

the short-term survival rate of patients has been improved, there is

still no cure. PAH has become a public health problem that endangers

the society, and heavily burdens members of our community and the

medical industry. This is attributable to the unclear pathogenesis of

PAH (5), so in-depth studies on its course are fundamentally

important for us to develop novel therapeutic strategies.

The pathology of PAH is characterized by irreversible tissue

changes called “pulmonary vascular remodeling” involving

pulmonary artery endothelial cells (ECs), smooth muscle cells

(SMCs), and fibroblasts (6). There is increasing evidence that

perivascular inflammation plays a functional role in pulmonary

vascular remodeling. It has been found that a large number of

immune cells such as macrophages, neutrophils, dendritic cells,

mast cells, T lymphocytes and B lymphocytes were clustered around

the pulmonary vessels in patients with PAH (7). Among them,

several subtypes of macrophages play key roles in PAH progression.

M1-type macrophages amplify inflammation by secreting pro-

inflammatory factors, while M2-type macrophages promote tissue

repair and play a major role in pulmonary vascular remodeling (8).

Simultaneously, the expression levels of pro-inflammatory factors

such as interleukin-1 beta (IL-1b), interleukin-6 (IL-6), interleukin-
10 (IL-10), transforming growth factor beta (TGF-b) and tumor

necrosis factor alpha (TNF-a) increased (9).

As an important part of the inflammatory process, macrophages

are crucial in the development of PAH (10). In recent years, it is

understood that macrophages can change their tissue remodeling

by affecting cell survival, proliferation, migration and immune

regulation (11). More and more evidence showed that the

interaction between inflammatory cells, vascular cells and

inflammatory mediators, which may provide an important

theoretical basis for the development of new, safe and effective

immune-targeted therapies for PAH.
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Herein, this review is aimed to review the role of macrophages

in the development of PAH.
2 Characteristics of macrophages and
their pathophysiological significance

2.1 Origin and tissue distribution
of macrophages

A complex host defense system that relies on innate immunity

has evolved to contribute to the adaptation of environment and

species diversity. Previous studies revealed that the source of

macrophages was not the only one. Earlier scholars have found

that phenotypically mature macrophages existed in some tissues

before the emergence of hematopoietic stem cells based on the

mouse model (12), and a subsequent study has shown that resident

tissue macrophages (RTM) might emerge during the development

of embryonic precursors (13). Experiments based on mouse model

showed (14) that the replacement of embryonic liver monocytes by

bone marrow-derived monocytes was not completed until 2 months

after birth. Vascular macrophages, on the other hand, were more

similar to dermal tissues and rapidly replaced by bone marrow-

derived monocytes after birth (15, 16). In addition, calculations of

monocyte influx into the spleen and local macrophages generated

by DNA synthesis of monocyte phagocytes showed that in the

steady-state mice, 55% of macrophages in the spleen were

maintained by monocyte influx and 45% by local division of

monocyte phagocytes. In addition, a quantitative study with

analysis of macrophages in the rat ventricles of the brain revealed

that the number of macrophages increased significantly with age

and the increased number of macrophages in the cerebral ventricle

was partly attributed to the proliferation of local cell, as mitotic cells

were observed (17). Another explanation for the growing number of

these cells was the uptake of blood monocytes and interstitial

macrophages, which were thought to be their precursor cells (18).

This implies that macrophages have a dual origin, that is, some

macrophages are derived directly from circulating monocytes which

are derived from bone marrow cells and others from tissue-resident,

locally dividing mononuclear phagocytes.

Existing studies have shown that the tissue-resident

macrophages were found to be divided into subpopulations based

on their autopsy location and functioning phenotype, including

microglia in the central nervous system, osteoclasts in bone, alveolar

macrophages in the lung, phage cells in the spleen, histiocytes in

interstitial connective tissue, and Kupffer cells in the liver (19, 20).

On top of that, other organs and tissues in the body also have

different types of macrophages that perform different functions and

phenotypes. For example, in the intestine, macrophages of different

phenotypes will be able to work together to maintain the balance of

flora in the gut. Secondary lymphocytes, similar to those in the

spleen, contain a large number of macrophages that self-initiate

adaptive and antiviral immune responses (16, 21, 22). Unique

macrophages reside in immune-privileged sites such as the brain,

eye, and testis, which play a central role in tissue remodeling and
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homeostasis (23–25). Although the developmental origin of tissue

macrophages has been widely recognized, there is high functional

heterogeneity of macrophages even from the same origin, especially

true for macrophage subsets in the cardiovascular system, which are

functionally different. In addition, the investigators had performed

single cell RNA sequencing against aortic cells from atherosclerotic

mice (26). It was found that the expression profile of genes in aortic

resident macrophages was analogous to that of aortic resident

macrophages in healthy aortic bone marrow cell populations,

whereas monocytes, monocyte-derived dendritic cells, and two

macrophage populations were almost exclusively present in

atherosclerotic aorta, including inflammatory macrophages

showing Il1b enrichment and those expressing TREM2 (trigger

receptor 2 expressed on bone marrow cells) macrophages showing

Trem2 enrichment. The gene expression profile of TREM2-

expressing macrophages appears to be similar to that of

osteoclasts and may have a regulatory role in calcification in

addition to functions in lipid metabolism and catabolism (26, 27).
2.2 Macrophage phenotypes and their
related regulatory mechanisms

Macrophages exert high plasticity capable of rapidly changing

their function via a process called polarization, by which

macrophages respond to stimuli from the local microenvironment

and acquire specific functional phenotypes. Macrophages are

typically classified as classically activated, pro-inflammatory, or

M1 (28, 29) and vicarious activated, anti-inflammatory, or M2

(30, 31). The specific gene expression program results in the

acquisition of the distinct signers on the surface of macrophages,

secretion of different cytokines, and metabolic adaptation. For

example, unpolarized macrophages in humans are usually labeled

with CD14, colony stimulating factor 1 receptor (CSF1R) and

CD68, M1 with CD86, CD64, nitric oxide synthase 2 (NOS2),

CXCL10, suppressor of cytokine signaling 1 (SOCS1), M2 with

CD163, transglutaminase type 2 (TGM2), arginase 1 (ARG1) and so

on (32, 33). Meanwhile, M1-type macrophages of mice show low or

no expression of CD68, CD64, found in inflammatory zone 1

(Fizz1), chitinase-like protein 3 (Chil3) and other markers are

obtained on the surface of M2-type cells (34). More importantly,

the balanced polarization of M1/M2 macrophages governs the fate

of an organ during inflammation or injury. When the body is

exposed to an external infection or autoimmune inflammation

severe enough to impact an organ, macrophages exhibit an M1

phenotype to counteract the stimulation of the release of TNF-a,
IL-1b, IL-6 and IL-23 (35, 36). However, if the M1 stage continues,

it will lead to tissue damage. Therefore, M2 macrophages secrete

large amounts of IL-10 and TGF-b to suppress inflammatory

responses, promote tissue repair, remodeling, angiogenesis, and

maintain homeostasis (37).

The macrophage polarization has been orchestrated and fine-

tuned by key mediators in the milieu. Interferon has long been

recognized as a signal sensor for the initiation of inflammatory

macrophages and plays a crucial role in the induction of M2

macrophage activation in particular (38, 39). TNF receptor
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associated factor 6 (TRAF6) is an important signaling node in the

Toll-like receptor pathway, which can initiate the transcription of

inflammation-related target genes (40). However, members of the

CCAAT enhancer binding protein family and signal transducer and

activator of transcription (STAT) family have been identified as key

mediators of these responses (41, 42). In addition, the regulators of

lipid metabolism peroxisome proliferator-activated receptor g,
circular RNAs, microRNAs, and long noncoding RNAs have been

shown to be key regulators of macrophage polarization in both in

vitro and in vivo models (43–46) (Figure 1).
2.3 Evidence to show macrophage
recruitment promotes PAH

A distinctive feature of vascular remodeling associated with

pulmonary hypertension is the accumulation of macrophages in the

perivascular/epithelial membrane. In the PAH setting, macrophages

appear to be one of the major cells responsible for causing

inflammation in the regional lung (47). Out of the inflammatory

cells implicated in PAH, macrophages usually influence the severity

and progression of the disease. A variety of studies in experimental

animal models have shown that perivascular macrophages perform

a central role in the vascular remodeling associated with PAH

(48, 49). In a mouse model of chronic thromboembolic pulmonary

hypertension, significant aggregation of macrophages expressing

specific markers was seen in high-volume arterial vasculature. In the

rat model, macrophages were increased in number compared to

controls and IL-6, IL-10 secretion was increased in the lungs (50).

Also, the same results were found in diseased vessels of patients with

PAH caused by left heart disease, whereby there was a significant

increase in the number of macrophages around the vessels. In

addition, macrophages in the vascular epithelium remained the

most pronounced inflammatory cells in the vessel wall in patients

with end-stage PAH who underwent lung transplantation (51).

Studies have shown that whole lung samples show up-

regulation of pro-inflammatory M1 and alternatively activated

M2 macrophage markers in a hypoxia-induced PAH model (52).

A recent study showed that the inhibition of M2-type macrophage

activation by Donepezil in monocrotaline (MCT)-treated rats could

effectively reduce the proliferation of PASMCs and improve

pulmonary vascular remodeling (53). To further verify the

presence of altered macrophage polarization in PAH patients, it

was investigated that an M1/M2 imbalance was observed between

macrophage low (MacLow) bone marrow-derived macrophages in

men and monocyte-derived macrophages in PAH patients under

doxycycline and interleukin-4 (IL-4) stimulation. In addition,

MacLow-derived alveolar macrophages exhibited characteristic

differences in polarization and diphtheria toxin A-chain

expression in response to doxycycline stimulation. This implies

that immune cells are involved in this paradigm and that targeting

the imbalance in macrophage numbers may provide a future

therapeutic option (54).

To further determine the crosstalk that exists between

macrophages and pulmonary artery SMC, Researchers showed

that macrophage derivatives such as platelet-derived growth
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factor-belisa (PDGF-B) are essential for pathological SMC

expansion in PAH (55, 56). They found that after hypoxic

exposure, Pdgfb mRNA was up-regulated in mouse macrophages

and Pdgfb expression was down-regulated in mouse macrophages

carrying hypoxia-inducible factor 1a (hif-1a), hypoxia-inducible
factor 2a (hif-2a) or the Pdgfb allele LysM-Cre and protected

from distal muscularization and PAH. Conversely, LysM−Crevon-

Hippel Lindaufl/fl mice had increased macrophage Pdgfb and

developed distal muscularization, PH, and right ventricular

hypertrophy (RVH) in normoxia (57, 58).
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It has also been shown that in hypoxia-induced PAH mouse

lungs, expression of tagged C-C chemokine receptor 5 (CCR5) (59),

interleukin-1 receptor 1 (IL-1R1) and myeloid differentiation

primary response protein 88 (MyD88) is predominantly localized

to pulmonary arterial SMC (PASMC), whereas mice with CCR5, IL-

1R1 and MyD88 gene disruption and inactivation show PASMC

proliferation during hypoxia exposure and perivascular and alveolar

macrophage recruitment was reduced, suggesting that PASMC-

derived CCR5, IL-1R1 and MyD88 may mediate macrophage

recruitment (60, 61), which provides a basis for further
FIGURE 1

Schematic diagram of macrophage sources, distribution and their activation. Macrophages are derived from bone marrow and embryonic stem cells,
and some bone marrow-derived monocytes subsequently flow into tissues to develop into tissue-resident macrophages together with embryonic
hepatocytes and yolk sac cells, and specifically differentiate into different functional macrophages at different sites. They have in common that both
can polarize into pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes. M1-type macrophages are activated by TLRs ligands and involve
several transcription factors, such as NF-kB, STAT1, STAT5, IRF3, IRF5 and HIF-1a, while releasing pro-inflammatory and chemokines including TNF-
a, IL-1a, IL-1b M2 macrophages activate transcription factors including STAT3, STAT6, IRF4, KLF4, JMJD3, PPARd, PPARg and release anti-
inflammatory substances, cytokines and chemokines including IL-10, TGF-b, CCL17, CCL18 and CCL22, which promote tissue repair and
regeneration, immunosuppression.
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exploration of potential targets in the therapeutic process of

macrophages and pulmonary hypertension.
2.4 Pathological effects of macrophages on
other cardiovascular diseases

In addition to the essential point of macrophages in the

progression of PAH, macrophages have been reported to play a

major role in other cardiovascular diseases. It has been reported that

macrophages play a vital role in all stages of atherosclerosis, among

which foam cells formed by macrophage lipid metabolism disorders

are markers of atherosclerotic (AS) plaque formation (62). There is

evidence to suggest that proteolytic cleavage of the macrophage

efferocytosis receptor c-Mer tyrosine kinase (MerTK) reduces

efferocytosis and promotes plaque necrosis and defective resolution

(63). Epidemiological studies have found that blood monocytes of

hypertensive patients show obvious pro-inflammatory phenotype,

and the content of inflammatory factors in serum is also significantly

increased (64). In chronic angiotensin (Ang)II perfusion model,

macrophage clearance can significantly prevent blood pressure rise,

improve vascular endothelial and smooth muscle cell dysfunction,

and reduce vascular reactive oxygen species (ROS) formation (65). In

addition, according to the characteristics of macrophages, altered

interactions between macrophages and damaged tissues in patients

with ischemic heart disease may be a key factor in improving the

regenerative potential of the heart. For example, macrophages derived

from yolk sacs produce moderate inflammatory reactions and secrete

various cytokines, such as chemokine ligand 24 (CCL24) and

oncostatin-M (OSM), to promote cardiac recovery after MI and

enhance the formation of neovascularization (66, 67). In addition,

there are studies based on mouse models showing that resident

macrophages prevent arterial stiffing and collagen deposition in the

steady state, mainly due to the expression of the hyaluronic acid (HA)

receptor LYVE-l on the surface of macrophages, which bind to the

HA pericellular matrix of SMCs, thereby regulating SMC collagen

expression (68). In conclusion, the function of macrophages varies in

cardiovascular diseases, and their pathogenesis may be different.
3 Pathological mechanism of PAH

3.1 Classical pathological
mechanism pathway

The imbalance of vasodilation and contraction caused by early

pulmonary vascular endothelial function injury and excessive

proliferation of pulmonary SMC is often considered as the main

pathological mechanism of PAH. Three classical pathways (69)

including prostacyclin pathway, endothelin-1 pathway and nitric

oxide pathway, have been identified as the main pathways leading to

excessive pulmonary vascular contraction.

Endothelin-1 (ET-1) is a small molecular active substance

composed of 21 amino acids. Endothelin mainly exists in the

precursor form in tissues and needs to be catalyzed by endothelin

convertase to form active endothelin (70). Through bonding to two
Frontiers in Immunology 05
G protein-coupled receptors (GPCR) on pulmonary SMCs,

endothelin-a and endothelin-b (ETA and ETB) receptors, ET-1

promotes the release of Ca2+ stored in cells and the opening of

voltage-dependent Ca2+ channels, resulting in the increase of

intracellular Ca2+, and further leading to vascular proliferation,

hypertrophy, fibrosis, contraction and inflammation (71, 72). In

addition, the increased expression levels of ETB on ECs can

stimulate the production of nitric oxide (NO) and prostacyclin,

thus leading to blood vessel vilation (73).

Ambrisentan, macitentan, and bosentan have been approved as

ET-1 receptor antagonists to inhibit the vasoconstrictor activity of

ET-1. Although amburecentine has a higher inhibitory effect on

ETA, macetan and Bosentan are better choices as dual antagonists

of ETA and ETB (74).

ECs are the principal generator of prostacyclin, which is

synthesized by arachidonic acid under the act ion of

cyclooxygenase (COX) and prostacyclin synthase (75).

Prostacyclin released by ECs binds to GPCR and prostaglandin

(IP) receptors on SMCs and activates adenylate cyclase, converting

adenosine triphosphate (ATP) into a second messenger, cyclic

adenosine phosphate (cAMP). It regulates smooth muscle

relaxation and inhibits proliferation by activating cAMP-

dependent protein kinase A and cAMP-activated exchange

protein. In addition, prostacyclin can reduce platelet aggregation,

inhibit smooth muscle cell proliferation, and play an

antithrombotic and anti-inflammatory role (76).

Under the action of endothelial nitric oxide synthase in ECs, L-

arginine is converted to L-citrulline and a small amount of NO is

produced (77). NO spreads to pulmonary vascular SMCs, binds to

guanosine guanylyl cyclase (GC), converts guanosine triphosphate

(GTP) into cyclic guanosine monophosphate (cGMP), and then

activates downstream cGMP-dependent protein kinase (PKG) to

decrease myofilament tension, dilate SMCs, produce vasodilation

and reduce pulmonary artery pressure (78). Studies have shown

that the damage of NO-GC-CGMP-PKG pathway is one of the

most important changes in the development of PAH. This is due to

the abnormal expression of iNOs in ECs, the decrease of NO

production, the decrease of NO bioavailability, the decrease

of GC and PKG activities and the increase of type 5

phosphodiesterase activity caused by oxidative stress (79). PAH is

caused by a decrease in the production of available vasodilators such

as NO (80). Three drugs have been approved for this route,

including tadalafil, vardenafil and sildenafil (81).

In view of the above classical pathway, a series of targeted drugs

have been approved for clinical treatment of PAH, but these drugs

are for symptomatic treatment. There is an urgent need to carry out

more in-depth research on the pathogenesis of PAH.
3.2 Macrophages mediate
PAH by interfering with
immunomodulatory mechanisms

Inflammation is a prominent feature of PAH. The synergistic

interaction between infiltrating cells and inflammatory cells plays

an important role in the pathogenesis of PAH (10). Since
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macrophages have a vital catalytic role in the inflammatory

response, it has been shown that macrophages exacerbate the

PAH process by participating in immune homeostasis and by

promoting adaptive immune responses during infection. In

addition, other immune cells such as T lymphocytes, B cells, DC

cells, mast cells and other inflammatory cells all have different roles

on the course of PAH (7).

Macrophages are central regulatory cells for T cell activation,

which participate in every step of T cell activation. Macrophages can

regulate and provide effective costimulatory signals and cytokine

secretion for T cell activation. T cells participate in pulmonary

vascular remodeling and inflammation in PH by IL, TNF-a and

interferon-g (IFN-g) (82). In addition, injection of T cells into rats

for immune reconstruction can inhibit the inflammatory reaction of

pulmonary artery wall and the apoptosis of ECs, thus blocking the

occurrence of PH (83), suggesting that Treg cells may play an

important role in inhibiting the occurrence and development

of PAH.

Studies have reported that B cells promote monocytes to

infiltrate into inflammatory sites of pulmonary vessels by

secreting CCL7, and monocytes further differentiate into

macrophages in inflammatory tissues (84, 85). The infiltration of

B lymphocytes and the generation of ectopic lymphoid tissue

(tertiary lymphoid tissue) can be seen around the pulmonary

vessels of PAH lesions, as well as the deposit ion of

immunoglobulin and complement molecules (86). In addition, a

significant increase in the blood in patients with PAH of

autoantibodies, including anti-endothelial cell antibodies,

fibroblasts, resisting ribonucleoprotein antibodies and anti-

topoisomerase I, these antibodies can be combined with vascular

ECs and induce its apoptosis, inflammation response, promote the

proliferation of vascular SMCs, resulting in the formation of the

PAH (9).

Monocytes are derived from hematopoietic stem cells in bone

marrow. When monocytes migrate into tissues and organs of the

whole body, they develop into mature macrophages, which perform

biological functions such as presenting antigens and regulating

immunity (14). Under the stimulation of granulocyte-macrophage

colony stimulating factor (granulocyte-macrophagecolony-

stimulatingfactor, GM-CSF) and IL-4 in vitro, monocytes can

differentiate into dendritic cells (DCs) (87). Promote the initiation

and differentiation of T cell response and participate in adaptive

immune response (88). It was found a large number of immature

DCs clustered near the pulmonary tissue of IPAH patients and

animal models, and the number was positively correlated with the

severity of the disease (89). However, the quantity of mature bone

marrow-derived DCs in the peripheral blood of IPAH patients is

reduced and accompanied by functional defects. Studies have

shown that DCs produce chemokine (C-X3-C motif) ligand 1

(CX3CL1) (90), which promotes the proliferation of SMCs in

PAH. Therefore, some scholars believe that DCs may be involved

in the pathogenesis of PAH.

In addition, many studies found that many studies have found

significantly elevated mast cells count and function in PAH patients

and animal models (91). It was found that mast cells B cell axis are

involved in PAH vascular remodeling. Activated mast cells can
Frontiers in Immunology 06
produce a large amount of IL-6, which is directly involved in the

vascular remodeling process on the one hand, and immunoglobulin

and autoantibody production on the other hand (92). Blocking IL-6

or inhibiting mast cells activation can significantly reduce the

generation of B lymphocytes, and alleviate the remodeling and

hemodynamics of PAH vessels (7). Similarly, inhibiting B-

lymphocyte activity or knockout B-lymphocyte activity in PAH

rats decreased trypsin, vascular endothelial growth factor, and

leukotriene 4 (LTE 4) levels in PAH patients (93, 94). It is

suggested that the mast cell IL-6-B lymphocyte axis plays an

important role in the pathogenesis of PAH.

The basic role of the immune system in the development of

PAH has been paid more and more attention. PAH is no longer

considered to be caused only by dynamic vasoconstriction.

Inflammation mediates the vascular remodeling of PAH.

Although the mechanism is still unclear, the basic role of the

immune system in the pathogenesis has been accepted (Figure 2).
4 Macrophage microenvironment
determines the function of
macrophages in PAH

Pulmonary vascular inflammatory microenvironment includes

intracellular microenvironment and extracellular microenvironment,

which are specifically manifested in endothelial cells, fibroblasts,

infiltrating immune cells, secreting products of corresponding cells

and extracellular matrix composition (95). Macrophages, as a

functionally heterogeneous cell population, are subject to changes in

phenotype and function depending on the microenvironment in which

they are located. In the immunosuppressive microenvironment of

pulmonary vascular infiltration, factors such as imbalance of

extracellular ion homeostasis, hypoxia, increased reactive oxygen

species, and low PH stimulate macrophages to have intracellular

metabolic disorders and abnormal transcription. Disturbances in

intracellular metabolism can lead to abnormal activation of

macrophages thereby disrupting the M1/M2 phenotype balance. This

phenomenon leads to an abnormal transformation of the macrophage

phenotype with excessive release of some chemokines or growth

factors. These growth factors or chemokines accelerate the

proliferation rate of pulmonary artery smooth muscle cells and the

mesenchymal transformation of endothelial cells (Figure 3).
4.1 Lipid metabolism

It has been previously shown that disorders of lipid metabolism

can cause deterioration of PAH (10). In this process, lipid

metabolism is also involved in macrophage activation (96). The

synthesis and storage of triglycerides is increased in M1

macrophages in response to stimulation by lipopolysaccharide

(LPS) and other pro-inflammatory factors , while M2

macrophages use fatty acid (FA) oxidation for energy supply. FAs

mainly exist in blood or other extracellular fluid in the form of

lipoproteins, which are covalently linked with glycerol to form
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triglycerides and phospholipids. Macrophages acquire FAs from

lipoproteins in two ways. One is endocytosis of lipoproteins.

Macrophages can only ingest metabolized triglyceride-rich

lipoproteins. The second one is free FAs released by extracellular

hydrolysis of glyceric acid in lipoproteins. Lipoprotein lipase (LPL)

secreted by macrophages is the key enzyme for the extracellular

release of FAs from triglyceride-rich lipoproteins.

An animal study found that MCT induced an increase in fatty

acid synthase expression and activity in lung tissue of rats with PH.

The increase of CD36 expression levels in M1-type macrophages in

the right ventricle, leading to an increase in body fatty acid levels

and a decrease in fatty acid oxidation (97), while inhibition of fatty

acid synthesis up-regulated oxidative phosphorylation, which in

turn inhibited PASMC proliferation and enhanced pulmonary

vascular remodeling and right ventricular hypertrophy (98).

Furthermore, it has been well known that a bioactive lipid

site 1 protease (S1P) plays an important regulatory role in

vasoconstriction, proliferation, fibrosis and vascular inflammation

(99). S1P is a key regulator of several cardiovascular and pulmonary

pathophysiological processes, including PAH (100). Recently

endothelial monocyte activating polypeptide-II (EMAP II) was

found to produce S1P in a two-pronged manner by triggering

bimodal phosphorylation of sphingomyelin, a common and
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coherent upstream signal in inflammatory macrophages and

SMCs. Sphingomyelin regulates phosphorylation, transcriptional

regulation and translocation of sphingosine kinase 1 in these cells

(101). This suggests that EMAP II functions specifically to initiate

downstream cellular pathophysiology, providing a reference for the

discovery of new potential therapeutic targets for PAH.
4.2 Amino acid metabolism

There was earlier evidence to show transient glutamine

depletion in human cell lines leads to disruption of the TCA cycle

and autophagy, while mTOR signaling activation is usually

activated under more severe glutamine deprivation (102), which

in turn leads to the expression and secretion of IL-8 and other

chemokines. Researchers found that a-ketoglutarate, which is

produced by glutamine decomposition plays a special role in M2

activation of macrophages (103). This M2 promotion mechanism is

regulated by high a-ketoglutarate/succinate ratio, while its low ratio

enhances the pro-inflammatory phenotype of classically activated

macrophages (M1 type).

In contrast, the role of glutamine metabolism in the

development of PAH, particularly glutaminase (GLS) as the key
FIGURE 2

Diagram of PAH pathological mechanism. Three classical pathways; ET-1 binds to ETA and ETB receptors to promote intracellular Ca2+ release and
Ca2+ channel opening, leading to increased intracellular Ca2+ and vascular remodeling; prostacyclin binds to GPCR and IP receptors, activating
adenylate cyclase, converting ATP to cAMP and inhibiting cell proliferation by activating PKA and Epac; NO binds to GC, converting GTP to cGMP,
thereby activating downstream PKG and causing vascular diastole. Immune cells and pulmonary hypertension, DCs stimulate T cell activation, T cells
participate in pulmonary vascular remodeling by producing IL, TNF-a, IFN-g, B cells participate in pulmonary vascular remodeling by over-secreting
antibodies, cytokines, etc. Mast cells participate in the development of PAH by producing large amounts of IL-6, while reducing IL-6 production or
inhibiting mast cell activation can reduce B lymphocyte production and can alleviate PAH. EC damages will release microvesicles, which contain
miRs, and others, these MVs will stimulate macrophages to secrete cytokine such as TGF-b, and then stimulate PASMC proliferation.
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enzyme that initiates the glutamine hydrolysis pathway, has

attracted more and more attention worldwide in recent years

(104). Current studies have demonstrated that pro-inflammatory

factors secreted by inflammatory cells can cause extracellular matrix

(ECM) remodeling and stiffness, leading to pulmonary sclerosis,

which is an important component in the pathogenesis of PAH

(105, 106). However, it has been found that pulmonary vascular

sclerosis activates two relevant transcriptional co-activators of the

Hippo signaling pathway, YAP/TAZ, early in PAH, and

subsequently YAP/TAZ (Yes-Associated Protein/Transcriptional

co-activator with PDZ-binding motif) activates glutaminase

enzymes that promote glutamine metabolism and mesenchymal

responses, leading to changes in the extracellular environment, such

as macrophage recruitment, which in turn leads to PAH (107, 108).

In addition, in cardiovascular diseases, including PAH, L-

arginine plays a key role in the initiation of intracellular signaling

pathways that trigger inflammatory responses in macrophages.

Extracellular L-arginine is essential for the activation of all

mitogen-activated protein kinases (JNK1/2, ERK1/2, and p38) and
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significantly accelerates the stimulation of macrophages by LPS (109).

In addition, arginine can generate sterilizing NO and citrulline under

the action of iNOS, among which citrulline can participate in the urea

cycle and promote smooth muscle cell proliferation and division

(110). M2-type macrophages can induce ARG-1 to catalyze arginine

metabolism to produce ornithine and urine, which can promote

collagen synthesis, pulmonary artery smooth muscle proliferation

and tissue remodeling.
4.3 Hypoxia environment

The hypoxia-induced PHmodel in mice shows that macrophages

are activated and inflammatory markers are expressed in the early

and transient stages of anoxic inflammation (48). Hypoxia stimulates

alveolar macrophages to differentiate into M2 phenotype, which is

required for vascular remodeling and subsequent establishment of

PAH (111, 112). In animal models of chronic hypoxic induced PH,

monocytes accumulate around the blood vessels (113). These cells
FIGURE 3

Schematic diagram of the 5 important factors affecting the macrophage microenvironment. Lipid metabolism: monocrotaline induces an increase in
body fatty acids and a decrease in fatty acid oxidation. Hypoxic environment: 5-lipoxygenase (5-LO) activation metabolizes leukotriene B4 (LTB4) to
exacerbate ROS toxicity in mitochondria; Rho kinase signaling pathway activates TGF-b and causes vasoconstriction. Amino acid metabolism: two
related transcriptional co-activators of Hippo signaling pathway, YAP/TAZ, can activate GLS enzymes and promote glutamine metabolism and TCA
cycle disorder; arginine can generate citrulline in response to iNOS to participate in urea cycle and promote smooth muscle cell proliferation;
methionine can induce elevated iNOS activity and increased TNF-a release, thus causing macrophages to M1 direction of polarization. Pro-
inflammatory and anti-inflammatory factors: Inflammatory factors and chemokines secreted by immune cells are involved in the regulation of their
respective inflammatory pathways, thus promoting or suppressing the inflammatory response. For example, IL-10 activates JAK1 and TYK2
phosphorylation and thereby activates the STAT3 pathway. Viral infection: Angiotensin-converting enzyme-2 (ACE2) receptor mediates the entry of
SARS-CoV-2 virus via transmembrane protease serine 2 (TMPRSS2). On the one hand, the increase in free DABK content in the presence of
decreased ACE2 function activates B1 receptors and also induces NO pathways to trigger inflammation; on the other hand, the virus attacks the
body’s immune function through DNA replication, thus aggravating the body’s immune deficiency. Thus, these factors affecting the macrophage
microenvironment can worsen the PAH process when they are deregulated.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1152881
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1152881
expressing a-SMA protein promote cell proliferation through the

production of type I collagen (114). However, liposomes including

chlorophosphate or gadolinium trichloride prevent pulmonary

vascular remodeling by the reduced production of collagen,

fibronectin, and tenascin-C production and accumulation of

myofibroblasts (115, 116). Studies have shown that reduction of

alveolar macrophages attenuated hypoxia-induced PH, emphasizing

the role of pulmonary macrophages in the pathogenesis of PAH (54).

Hypoxia M2 macrophage supernatant can promote the proliferation

of PASMCs, while carbon monoxide can inhibit this early

inflammatory response and improve macrophage infiltration and

cytokine production (111, 117). Leukotriene B4 (LTB4) derived from

macrophages promotes endothelial injury and proliferation of

PASMC (118). Flow cytometry showed that hypoxia-induced PH

in mice resulted in the recruitment of circulating classical monocytes

into the lungs to become interstitial macrophages, which expressed

platelet spondin-1, activated TGF-b by increasing Rho kinase

signaling pathway, and caused vasoconstriction (119).
4.4 Pro-inflammatory and anti-
inflammatory factors

Studies have shown that the body will activate acute

inflammation when stimulated by undergoing ventricular shunts

or chronic inflammation, especially bone marrow inflammation,

during which macrophages adopt a typically activating M1

phenotype to drive the liberation of inflammatory mediators

(120). However, this spontaneous immune response mechanism,

if uncontrolled, will further deepen tissue damage, while the shift to

an anti-inflammatory M2 phenotype helps to facilitate wound

healing and tissue repair. Polarization of M1 and M2 phenotypes

is a specific response of the body to the outside world, and the

dynamic balance between them can inhibit further tissue infection

and maintain immune regulatory balance. Studies have shown that

the pro-inflammatory cytokines IL-1b, IL-6, IL-12 and TNF-a,
produced by monocytes and many other cell types, are implicated in

the pathogenesis of primary PAH (PPAH) (121, 122). IL-6 is

derived from epithelial cells and SMCs (123), and IL-1b and

TNF-a have the ability to induce proliferation of fibroblasts and

SMCs (124, 125) and promote thrombosis. Thus, these cytokines

may affect the functional architecture of the fibroblasts in the outer

layer of the pulmonary vasculature, the SMCs in the middle layer or

the ECs in the inner layer, and the disrupted barrier will trigger

serious cardiovascular diseases such as microthrombotic lesions and

PPAH. In addition, studies have shown that PAH induces PASMC

proliferation in vitro by distorting the M1/M2 ratio and releasing

IL-6 (123). Similarly, MDMs in PAH patients after IL-4 stimulation

exhibit depolarization toward the subtype of M2 with a

corresponding damage response (126, 127). Interleukin 18 (Il-18),

which is mainly secreted by macrophages, is closely associated with

the IL-1 family of cytokines and similarly stimulates various pro-

inflammatory changes at the target site, including activation of

immune effector T cells and an indirect increase in the interferon

content, along with positive feedback on the secretion of surface

proteins and chemokines from target cell adhesion molecules. More
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compelling evidence has shown that compared with healthy

controls (128), patients with PAH have elevated plasma IL-18

protein, and overexpression of IL-18 in the lung leads to mild

dilation of PAH and RV. However, genetic ablation of IL-18 does

not reduce hypoxia-induced PAH and RV hypertrophy (129),

suggesting that IL-18 may be a modifier of the disease (130).

In addition, chemokines, as pro-inflammatory cytokines that

induce cells of the immune system to enter the infection site during

the immune response, has a central role to play in the process of

PAH. In general, chemokines accumulate in the intimal layer of

blood vessels in the form of lipoprotein particles, especially at

arterial branches and bends, which are particularly prone to local

endothelial cell dysfunction. Stored lipoproteins are modified by

various mechanisms, including oxidation, enzymatic processing,

demethylation and aggregation, leading to inflammation and

activation of surrounding ECs. Activated ECs, in turn, launch of a

large number of chemotactic cytokines that cause circulating

monocytes in the blood to be transferred to the intima and

surrounding spaces of the arterial vessels, where they eventually

reside and polarize into monocyte-derived macrophages (131).

These macrophages are aggressively consuming lipoprotein rich

in esters of cholesterol and subsequently become “foam cells”.

Although macrophage uptake of lipoproteins appears to be

beneficial, these “foam cells” exacerbate disease by secreting pro-

inflammatory mediators, including cytokines and ROS, and

ultimately leading to death through necrosis or apoptosis. Studies

have shown that CCR4 shows a more obvious M2 activation, as

demonstrated by the elevated representation of the archetypal M2

markers ARG1 and FIZZ1 (132–134). Chemokine C-X-C motif

ligand 4 (CXCL4/PF-4), a platelet-derived chemokine (135, 136),

has been shown to prevent monocyte apoptosis and promote

macrophage differentiation in vitro (137). In addition, CCR5 is

expressed on pulmonary vascular walls and macrophages, and up-

regulated in PAH (59). In human tissues, CCR5 is found in ECs,

smooth muscle, and macrophages from patients with PAH and is

also up-regulated after chronic hypoxia in rodent models. Mice

lacking CCR5 are protected by hypoxic PH, and the proliferation of

PASMC is reduced (59).
4.5 Viral infection

Researchers prospectively studied monkey immunodeficiency

virus-associated PH (SIV-PH) and found that all animals exhibited

a similar course of SIV acquisition, with an imbalanced plasma

environment that was replaced more by an inflammatory infiltrate.

Among the PH animals there was a higher frequency of conversion

of tissue-resident M1-type macrophages and a lower frequency of

anti-inflammatory M2c-like CD68+ macrophages (138).

In addition, during the SARS-CoV-2 virus pandemic a few years

ago, it was shown that the angiotensin-converting enzyme-2

(ACE2) receptor mediates the entry of three coronavirus strains:

SARS-CoV, NL63 and SARS-CoV-2, which triggers cardiovascular

disease and severe lung injury and exacerbates the PAH process

(139). They found that ACE2 removes an amino acid residue from

the peptide des-Arg bradykinin (DABK), thereby preventing DABK
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from binding to the bradykinin receptor B1 receptor. When ACE2

function is reduced in the lung as a result of endotoxin, free DABK

increases, which in turn activates the B1 receptor and also interferes

with adaptive immunity by activating macrophages and other

immune system cells, thereby increasing the secretion of IL-6, IL-

10 and other inflammatory factors, thereby exacerbating the PAH

process (140). It has also been demonstrated that SARSCoV-2 host

cell entry is dependent on the SARS-CoV receptor ACE2 and can be

blocked by a clinically proven inhibitor of the cytosolic serine

protease TMPRSS2, which is used by SARS-CoV-2 for S-protein

initiation. Furthermore, this suggests that antibody responses

against SARS-CoV may at least partially protect against

SARSCoV-2 infection, thereby slowing the progression of PAH,

and also provides key insights for identifying potential targets for

antiviral intervention (141, 142).
5 Crosstalk between macrophages
and other cell types

More and more scientists agree that cross-talks between different

cell types including endothelial cells, macrophages, fibroblasts and

smoothmuscle cells are so important for the development of PAH. In

either patients with PAH or experimental models of PH, Acute lung

injury, viral or bacterial infections or inflammatory cytokines/

chemokines may induce endothelial cell damages, which are an

initial event for the development of PAH. Damages of endothelial

cells release microvesicles which may include miRNAs, caveolin-1

(143). In some patients, red blood cells may be lysed, and release

chemokines/cytokines. These microvesicles and cytokines/

chemokines activate macrophages to produce TGF-b. TGF-b
stimulates smooth muscle cell proliferation and migration (143, 144).

Studies have shown that macrophages are recruited to the

periphery of pulmonary vessels and overexpress HO-1, which

may respond to Hb-mediated oxidative stress, as excess Hb

contacts pulmonary vascular endothelial cells and triggers

endothelial apoptosis (145). It has been found that activated

macrophages can increase the production of CSF1 protein in

fibroblasts in vitro and aggravate the inflammatory response

(146). Activated fibroblasts produce CCL2, which attracts

macrophages to the fibrotic or damaged area. In addition, the

expression of pim-1 proto-oncogene (PIM1) and transcription

factor NFATC2 in macrophages can be mediated by fibroblast-

derived IL-6. And in any IL-6 responder cell, including fibroblasts,

macrophages, endothelial cells, and smooth muscle cells, the

enhanced proliferative and anti-apoptotic capacity in vascular

walls is also controlled by fibroblast-derived IL-6 (147).
6 Conclusion

Over the past years, new breakthroughs have been made in the

investigation of the pathogenesis and therapeutic strategies for

PAH. In addition to the currently known classical therapeutic

pathways including the endothelin pathway, prostacyclin
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pathway, and NO pathway, more and more scholars are focusing

on immune inflammation-related therapeutic pathways. This

review further elucidates that synergy between macrophages and

immune cells have a key role in the pathogenesis of PAH. The

microenvironment of macrophages is altered in response to

disturbances in the regulation of lipid or amino acid metabolism,

hypoxic and inflammatory infiltrative environments, and infections

such as viruses, which drive alterations in macrophage polarization

and function, ultimately leading to PAH pathological changes.

Although the evidence provided by the current study delivers a

persuasive argument that macrophages are instrumental in the

PAH process, our empirical understanding of the specific

mechanisms and roles of macrophages in the PAH process at

different times remains immature, and more studies are

warranted to better characterize the mechanisms of function and

regulation of diverse macrophage subpopulations under normal

and pathological conditions.
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