100 research outputs found

    Mechanistic Studies Of Biomass-Derived Oxygenates Hydrodeoxygenation Reaction Over Bimetallic Catalysts

    Get PDF
    There has been a growing interest in converting biomass to value added fuels and chemicals due to the increasing concerns about global warming and sustainable energy. Selective hydrodeoxygenation is an essential step in such conversion. Previous studies have reported that bimetallic catalysts consisting a group 10 metal and a more oxyphilic metal (such as PdFe and PtZn) have efficacy in such upgrading, while fundamental understanding of such reactions is sorely lacking. In this work, a Zn-Pt model catalyst system was used to study the reaction molecules for biomass-derived oxygenates (furfural, benzaldehyde, anisole and guaiacol). Surface science techniques were used provide fundamental insight into the reaction mechanisms as well as the active sites on the catalyst. Overall, it was determined that Zn addition provides a specific binding site for the oxygen atom in the reactant molecule, which helps facilitate the selective C-O bond cleavage reaction. In addition, the interaction between the aromatic ring and catalytic surface is greatly limited by Zn addition, helping to avoid undesired ring saturation. In contrast, the aromatic oxygenates interacts with the Pt(111) surface via the π-orbitals of the ring in a parallel geometry, facilitating ring hydrogenation and unselective decomposition. Such observations were compared with anisole reaction on high surface area supported Pt and PtZn catalysts and consistent results were obtained. To understand how general the effect observed for Zn-Pt system are, reaction of anisole on Co/Pt(111) was also studied. Similar to the Zn addition, Co modifier also interacts closely with the oxygen atom and facilitate selective C-O bond cleavage in anisole. However, a much weaker electronic effect was observed for Co modifier. Similar to the Pt(111) surface, parallel geometry and strong interaction between the ring and Co/Pt(111) was observed

    Optical flow estimation via steered-L1 norm

    Get PDF
    Global variational methods for estimating optical flow are among the best performing methods due to the subpixel accuracy and the ‘fill-in’ effect they provide. The fill-in effect allows optical flow displacements to be estimated even in low and untextured areas of the image. The estimation of such displacements are induced by the smoothness term. The L1 norm provides a robust regularisation term for the optical flow energy function with a very good performance for edge-preserving. However this norm suffers from several issues, among these is the isotropic nature of this norm which reduces the fill-in effect and eventually the accuracy of estimation in areas near motion boundaries. In this paper we propose an enhancement to the L1 norm that improves the fill-in effect for this smoothness term. In order to do this we analyse the structure tensor matrix and use its eigenvectors to steer the smoothness term into components that are ‘orthogonal to’ and ‘aligned with’ image structures. This is done in primal-dual formulation. Results show a reduced end-point error and improved accuracy compared to the conventional L1 norm

    A review of hough transform and line segment detection approaches

    Get PDF
    In a wide range of image processing and computer vision problems, line segment detection is one of the most critical challenges. For more than three decades researchers have contributed to build more robust and accurate algorithms with faster performance. In this paper we review the main approaches and in particular the Hough transform and its extensions, which are among the most well-known techniques for the detection of straight lines in a digital image. This paper is based on extensive practical research and is organised into two main parts. In the first part, the HT and its major research directions and limitations are discussed. In the second part of the paper, state-of-the-art line segmentation techniques are reviewed and categorized into three main groups with fundamentally distinctive characteristics. Their relative advantages and disadvantages are compared and summarised in a table

    Supervised coordinate descent method with a 3D bilinear model for face alignment and tracking

    Get PDF
    Face alignment and tracking play important roles in facial performance capture. Existing data-driven methods for monocular videos suffer from large variations of pose and expression. In this paper, we propose an efficient and robust method for this task by introducing a novel supervised coordinate descent method with 3D bilinear representation. Instead of learning the mapping between the whole parameters and image features directly with a cascaded regression framework in current methods, we learn individual sets of parameters mappings separately step by step by a coordinate descent mean. Because different parameters make different contributions to the displacement of facial landmarks, our method is more discriminative to current whole-parameter cascaded regression methods. Benefiting from a 3D bilinear model learned from public databases, the proposed method can handle the head pose changes and extreme expressions out of plane better than other 2D-based methods. We present the reliable result of face tracking under various head poses and facial expressions on challenging video sequences collected online. The experimental results show that our method outperforms state-of-art data-driven methods

    Characterization of deep sub-wavelength nanowells by imaging the photon state scattering spectra

    Get PDF
    Optical-matter interactions and photon scattering in a sub-wavelength space are of great interest in many applications, such as nanopore-based gene sequencing and molecule characterization. Previous studies show that spatial distribution features of the scattering photon states are highly sensitive to the dielectric and structural properties of the nanopore array and matter contained on or within them, as a result of the complex optical-matter interaction in a confined system. In this paper, we report a method for shape characterization of subwavelength nanowells using photon state spatial distribution spectra in the scattering near field. Far-field parametric images of the near-field optical scattering from sub-wavelength nanowell arrays on a SiN substrate were obtained experimentally. Finite-difference time-domain simulations were used to interpret the experimental results. The rich features of the parametric images originating from the interaction of the photons and the nanowells were analyzed to recover the size of the nanowells. Experiments on nanoholes modified with Shp2 proteins were also performed. Results show that the scattering distribution of modified nanoholes exhibits significant differences compared to empty nanoholes. This work highlights the potential of utilizing the photon status scattering of nanowells for molecular characterization or other virus detection applications

    Photo scattering signal amplification in gold-viral particle ligation towards fast infection screening

    Get PDF
    The polarization states of scattered photons can be used to map or image the anisotropic features of a nanostructure. However, the scattering strength depends heavily on the refractivity contrast in the near field under measurement, which limits the imaging sensitivity for viral particles which have little refractivity contrast with their nano-ambientes. In this paper, we show the photon scattering signal strength can be magnified by introducing a more abrupt change of refractivity at the virus particle using antibody-conjugated gold nanoparticles (AuNPs), allowing the presence of such viruses to be detected. Using two different deep learning methods to minimize scattering noise, the photon states scattering signal of a AuNPs ligated virus is enhanced significantly compared to that of a bare virus particle. This is confirmed by Finite Difference Time Domain (FDTD) numerical simulations. The sensitivity of the polarization state scattering spectra from a virus-gold particle doublet is 5.4 times higher than that of a conventional microscope image

    Sciences for The 2.5-meter Wide Field Survey Telescope (WFST)

    Full text link
    The Wide Field Survey Telescope (WFST) is a dedicated photometric survey facility under construction jointly by the University of Science and Technology of China and Purple Mountain Observatory. It is equipped with a primary mirror of 2.5m in diameter, an active optical system, and a mosaic CCD camera of 0.73 Gpix on the main focus plane to achieve high-quality imaging over a field of view of 6.5 square degrees. The installation of WFST in the Lenghu observing site is planned to happen in the summer of 2023, and the operation is scheduled to commence within three months afterward. WFST will scan the northern sky in four optical bands (u, g, r, and i) at cadences from hourly/daily to semi-weekly in the deep high-cadence survey (DHS) and the wide field survey (WFS) programs, respectively. WFS reaches a depth of 22.27, 23.32, 22.84, and 22.31 in AB magnitudes in a nominal 30-second exposure in the four bands during a photometric night, respectively, enabling us to search tremendous amount of transients in the low-z universe and systematically investigate the variability of Galactic and extragalactic objects. Intranight 90s exposures as deep as 23 and 24 mag in u and g bands via DHS provide a unique opportunity to facilitate explorations of energetic transients in demand for high sensitivity, including the electromagnetic counterparts of gravitational-wave events detected by the second/third-generation GW detectors, supernovae within a few hours of their explosions, tidal disruption events and luminous fast optical transients even beyond a redshift of 1. Meanwhile, the final 6-year co-added images, anticipated to reach g about 25.5 mag in WFS or even deeper by 1.5 mag in DHS, will be of significant value to general Galactic and extragalactic sciences. The highly uniform legacy surveys of WFST will also serve as an indispensable complement to those of LSST which monitors the southern sky.Comment: 46 pages, submitted to SCMP
    corecore