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Abstract
Face alignment and tracking play important
roles in facial performance capture. Existing
data-driven methods for monocular videos
suffer from large variations of pose and ex-
pression. In this paper we propose an efficient
and robust method for this task by introducing
a novel supervised coordinate descent method
(SCDM) with 3d bilinear representation. In-
stead of learning the mapping between the
whole parameters and image features direct-
ly with a cascaded regression framework in
current methods, we learn individual sets of
parameters mappings separately step by step
by a coordinate descent mean. Since different
parameters make different contributions to the
displacement of facial landmarks, our method is
more discriminative to current whole-parameter
cascaded regression methods. Benefiting from a
3D bilinear model learned from public databas-
es, the proposed method can handle the head
pose changes and extreme expressions out of
plane better than other 2D-based methods. We
present the reliable result of face tracking under
various head poses and facial expressions on
challenging video sequences collected online.
The experimental results show our method
outperforms state-of-art data-driven methods.

Keywords: supervised coordinate descent
method, face alignment, face tracking, facial
performance capture

1 Introduction

Face alignment and tracking are essential for
tasks such as facial performance capture and
facial animation, which have been popular in
3D online games and CG films. It also plays
an important role in building person specific a-
vatars for VR or AR applications, such as vir-
tual classroom and remote video chatting. Al-
though many techniques have been developed
to achieve facial capture, oftentimes dedicated
equipment are needed, such as camera arrays,
depth camera and facial markers. For consumer
grade applications, an aspiring solution is to de-
velop a facial performance capture system based
on automatic face alignment and tracking with a
commodity web-camera.

In the past, some model-based methods have
been studied for face alignment in 2D image do-
main. One well-known method is Active Shape
Model (ASM) [1], which is one of the earli-
est data-driven models for shape fitting. As an
improvement, Active Appearance Model(AAM)
[2] considers the global appearance rather than
only local textures in ASM. Although AAM and
its variations [3, 4, 5, 6] can fit face well for
near-frontal face images, they tend to fail for un-
controlled face images in the wild environmen-
t. Recently regression-based methods have been
exploited, and cascaded regression with shape-
indexed feature is introduced for face align-
ment, like face alignment by Explicit Shape
Regression[7] and Supervised Descent Method
[8], as significant achievements in regression-
based methods. These methods can be used for
real-time face fitting efficiently but they cannot
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capture variations of pose and expression out of
plane due to lack of 3D information.

With the development of commercial depth
acquisition devices, it has been convenient to
obtain 3D face data. Benefiting from existing
3D face databases, regression-based methods
with 3D information have been proposed. While
some methods[9] uses 3D face database for aug-
menting 2D face images with wilder ranges
of poses and expressions, some methods have
trained 3D face models for user-specific multi-
parameter regression methods[10]. At present
this kind of method can deal with slight varia-
tions of pose and expression in 3D space, while
a post-processing is still needed.

In this paper, we are aiming for low cost
commodity webcams which make accurate face
alignment and tracking much harder. We pro-
pose a novel supervised coordinate descen-
t method combined with a 3D bilinear face mod-
el for robust face alignment and tracking across
poses and expressions. The main contributions
of this paper are described as follows:

• We propose a novel supervised coordinate
descent method for learning different type-
s of parameters mappings separately to re-
duce the cross impact caused by learning a
whole-parameter mapping.

• Taking advantage of a 3D bilinear model
learned from public databases, our method
can handle large pose and expression varia-
tions in 3D space with accuracy - overcom-
ing the deficiencies of existing methods.

• Our method is validated and compared in
challenging face videos collected online.

Related methods are reviewed in section 2,
and the framework and details of our approach
are described in section 3. In section 4, we
demonstrate how to train and test our model for
a face alignment and tracking application, fol-
lowed by experiments and results in section 5,
and conclusion in section 6.

2 Related work

Various kinds of data-driven methods have been
developed for face alignment and tracking. Be-
cause our method is a regression-based method

with a 3D facial bilinear representation model,
here we mainly review these following related
works, including 2D parameter-based method-
s, 2D regression-based methods, 3D facial rep-
resentation models and current 3D regression-
based methods.

AAM[2] and its variants[3, 4, 5, 6] are typ-
ical 2D parameter-based methods. In this kind
of methods, a PCA model is trained for glob-
al appearance while a shape PCA is trained at
the same time. Matthews et al. [11] improved
the optimization algorithm for AAM cost func-
tion by well-known project-out inverse compo-
sitional algorithm. Cootes et al. [3] proposed
view-based AAM to adjust the standard AAM
to the multi-view environment. Donner et al.
proposed a fast search for parameters of AAM
using canonical correlation analysis[12]. Gon-
zalezmora et al. proposed 2D bilinear AAM [5],
and Lee et al. proposed tensor-based AAM [6].
These extensions ease the impact of variation-
s of pose, expression and illumination, but they
often tend to unreliable for faces in the wild, due
to the sensitivity to initialization.

Another popular type of face alignment meth-
ods are 2D regression-based methods. Among
them, the cascaded regression framework with
shape-indexed features obtained in 2D images
is adopted. As a representative method, Cao et
al. proposed a real-time Explicit Shape Regres-
sion [10]. They designed a two-level boosted
rand ferns regression with pixel difference fea-
ture in local coordinates. Further, Xiong et al.
presented Supervised Descent Method [8, 13],
which provides reasonable theory description of
the cascaded regression: It can be regarded as
a supervised learning method for approximat-
ing the iterative gradient descent solution of a
nonlinear cost function. It is simple and ex-
tensible, which inspires many works under this
framework, such as ensemble of regression trees
[14], and regularized linear cascaded regression
with local binary features[15]. These method-
s are very fast while maintaining high accuracy,
but they often show poor results when the vari-
ations of pose and expression are large. Feng
et al. proposed a cascaded collaborative regres-
sion trained using a mixture of synthetic and re-
al images[9]. A 3D morphable face model[16]
is used to generate synthesized 2D faces with
various poses. Thus it shows a better capability



Figure 1: A flowchart of SCDM for face alignment and tracking.

to face alignment with pose variations. Howev-
er, it is still a hard task to locate and track face
landmarks with fast and extreme changes out of
plane in the wild environment.

As an important augmentation to handle vari-
ations of face shape in 3D space, 3D face repre-
sentation models have been studied widely.The
Blendshape[17] is studied at early stage for de-
scribing a range of typical facial expressions
in 3D domain, which provides a basic 3D face
model for later 3D face regression methods, like
3D PCA faces[16], multi-linear model[18], and
bilinear model[9].Blanz et al.[16] trained a PCA
model on a 3D face dataset and represented a 3D
face as a linear combination of 3D PCA com-
ponents in their 3D morphable model. Vlasic
et al.[18] proposed a multi-linear model to face
transfer. In this model, a 3D face mesh is rep-
resented as a muliti-linear combination of prin-
cipal components by visemes × expressions ×
identities modes. Biliear model[19] is a simple
multi-linear model, which represents a 3D shape
as the combination of principal components by
expressions × identities modes. These method-
s can represent a face with blendshapes reliably

and can be used to drive a avatar easily. Biliear
model has been used in recent face tracking and
performance capture, such as dynamic expres-
sion model[19] and dynamic displacement mod-
el [20].

Benefiting from sufficient 2D labeled face im-
ages and corresponding 3D models, 3D data-
driven methods for face tracking and perfor-
mance capture have been focused by researcher-
s. Saragih et al. [21] combined 3D constrained
local model with MPEG-4 face model to track
face and transfer expressions. Yang et al. [22]
trained linear PCA model on a public 3D face
database offline, and located 2D landmarks by
a variant of ASM [23] and solved coefficients
of 3D PCA components based on perspective
projection when tracking online. Similar to this
work, Shuang et al. [24, 25] used a popular
2D landmark detector [14] to localize the facial
landmarks and solved the pose, expression co-
efficients and identity coefficients based on per-
spective projection and a pre-trained 3D bilinear
model. Cao et al. [19] proposed a 3D cascaded
regression-based method for user-specific face
tracking and animation. It integrates 2D land-



mark detection and the optimization of 3D pro-
jection parameters and expression parameters in
a cascaded regression, which achieves compa-
rable tracking result to a depth-based method
[26]. Moreover, Cao et al. [20] proposed Dy-
namic Displacement Model by adding 2D dis-
placements to perspective projection of 3D land-
marks. In this method, pose matrix, expression
coefficients and 2D displacements are regarded
as a whole parameter, and a cascaded regression
is learned on an augmented database. Then the
identity coefficients and camera matrix are op-
timized based on a 3D bilinear model and per-
spective projection. Their method can track the
facial landmarks more accurately when avoiding
pre-processing done in their previous work.

Our work is inspired by 3D Dynamic Dis-
placement Model and 2D-based cascaded re-
gression. Since different parameters have differ-
ent impact on 2D displacements of landmarks,
training a cascaded regression directly for the
whole parameters probably leads to cross im-
pact, thus there is still a complex pro-processing
needed for refine the coarse regressed result.
In this paper a supervised coordinate decen-
t method is proposed to learn the different types
of parameters separately in a cascaded regres-
sion framework. The details are described in
Section 3.

3 Supervised Coordinate Descent
Method with a 3D Bilinear
Model

3.1 Overview

This paper presents a 3D multi-parameters cas-
caded regression method based on a 3D Bilin-
ear Model and Dynamic Displacement Mod-
el. The 3D Bilinear Model describes a bilin-
ear representation of a 3D face mesh, and the
Dynamic Displacement Model describes how to
project 3D landmarks onto their corresponding
2D ones on the image plane. The parameter-
s include pose matrix of perspective projection,
expression coefficients and identity coefficients
based on a trained 3D bilinear model, and 2D
displacements based on Dynamic Displacement
Model. The key idea in this work is that dif-
ferent kinds of parameters mapping with shape-

indexed should be learned one by one through
a supervised coordinate descent way. It mean-
s that other parameters keep fixed while learn-
ing a specific parameter mapping at a regression
step. A flowchart of our supervised coordinate
descent method is shown in Fig. 1.

3.2 3D Bilinear Model and 2D
Displacement Model

Based on Vlasic’s work [18] and Cao’s work
[20], a 3D face mesh can be represented as a
bilnear combination by identity × expression
modes. When the expression keeps fixed, a use-
specific face can be represented as a linear com-
bination of faces with different identities; When
the identity keeps fixed, a face with specific ex-
pression can be represented as a linear combina-
tion of faces with a series of predefined expres-
sions. A 3D face database with different iden-
tities and expressions can be represented as a 3
modes tensor by vertex× identity× expression.
And N-mode SVD is used to compress the huge
tensor to a small core tensor. For a 3D face V ,
its bilinear representation is described as Eq. 1:

V = Cr ×2 u
T ×3 e

T (1)

where Cr is a core tensor, u is the identity coef-
ficients, e is the expression coefficients, and ×k
is product operator by mode-k.

The transformation from object coordinate to
camera coordinate is obtained by a pose matrix
including 3D rotation and translation, as shown
in Eq. 2:

F = RV + t (2)

whereF is a 3D face mesh in camera coordinate,
R is rotation matrix, and t is translation vector.

A 3D predefined landmark on a face mesh is
projected onto the 2D image plane by perspec-
tive projection, but there usually exists differ-
ence between the directly projected 2D position-
s and the real 2D landmarks. The addition of a
2D displacement [20] can supply this drawback.
The transformation from 3D landmarks to 2D
landmarks is described in Eq. 3:

sk =
∏

(F (vk)) + dk (3)

where sk is a 2D landmark in image plane, F (vk)

is its corresponding predefined vertex on 3D



face mesh F , dk is the 2D displacement of sk,
and

∏
is the perspective projection operator:

For a 3D vertex p = [X,Y, Z]T , its projected
position in normalized 2D image plane is: [x =
X/Z, y = Y/Z]T , and the original 2D landmark
is normalized by : [x = (xo − W/2)/W, y =
(yo −H/2)/W ]T .

Usually, given L labeled 2D landmarks and
corresponding predefined 3D landmarks on its
3D face mesh, the pose matrix {R, t}, identi-
ty coefficients u, expression coefficients e and
displacements D = {dk} can be solved by min-
imizing the Huber loss function applied to re-
projected error between 2D landmarks and 3D
landmarks:

argmin
P

L∑
k=1

‖dk‖2ε (4)

where P = {R, t,u, e,D} ,and dk is computed
based on the definition above:

dk = sk −
∏

(R(Cr ×2 u
T ×3 e

T ) + t)(vk)

(5)
In the case that 2D landmarks has been detect-

ed, a nonlinear trust region optimization method
like a sparse variant of the Levenberg Marquardt
algorithm [27] can be used to solve pose and bi-
linear parameters, as Shuang et al. [24, 25] do.
It is obvious is that a reliable landmark detec-
tor is necessary, but popular detectors are usual-
ly 2D-based and cannot capture large variations
of pose and expression out of plane. So we are
aiming at solving both 2D landmarks and 3D pa-
rameters simultaneously by a cascade regression
with shape-indexed features.

3.3 Supervised Coordinate Descent
Method

In a cascaded regression framework [8, 10, 13],
given sufficient training samples, the optimal so-
lution of a nonlinear cost function from a rea-
sonable initialization can be solved by iterative-
ly learning the mappings between current func-
tion output and the residual between current in-
put and the optimal solution, as a supervised ap-
proximation of the gradient descent method.

As for face alignment and tracking in 2D
videos, the nonlinear cost function is based on
a feature description like SIFT [8], HOG[9],

Figure 2: The normalized inner-pupil distance
per landmark with drift of differen-
t parameters.

binary features[15], extracted around the land-
marks. Given a 2D face image I and L 2D
landmarks s = [s1, ...sk, ..., sL]T , the fea-
ture function is denoted as h(I, s). Based
on the bilinear model and 2D displacemen-
t model, our input for the function is P =
{R, t,u, e,D}, which generates the 2D land-
marks s(P) by Eq. 3, then the feature func-
tion is represented as h(I, s(P)). Denoting
P0 = {R0, t0,u0, e0,D0} as the initializa-
tion, and P∗ = {R∗, t∗,u∗, e∗,D∗} as the op-
timal solution, the learning object is the residual
∆P = P∗ − P0 = {∆R,∆t,∆u,∆e,∆D}.
Our cost function is defined by minimizing the
distance between features of predicted parame-
ters and features of real parameters, as shown in
Eq. 6:

f(P0+∆P) = ‖h(I, s(P0+∆P))−h(I, s(P∗))‖2
(6)

A standard cascaded regression for the whole
parameters is:

Pk+1 = Pk + Wkh(I, s(Pk)) + bk (7)

where Wk is the learned mapping between the
residual ∆Pk = P∗ − Pk and the curren-
t shape-indexed feature h(I, s(Pk)) on a train-
ing dataset, and bk is the learned bias. How-
ever, it is sensitive to changes out of plane, and
probably drift away from the real solution, be-
cause taking different types of parameters as w-
hole can lead to the cross impact.

It is known that different parts of ∆P make
different contributions to the movement of 2D
lamdmars ∆s = s(P0 + ∆P) − s(P0) : Pose



residual {∆R,∆t} produces large-scale glob-
al movement; displacement residual ∆D pro-
duces large-scale movements of contour land-
marks and small-scale inner landmarks; ex-
pression residual ∆e produces large-scale local
movements of parts of landmarks; identity resid-
ual ∆u produces small-scale global movemen-
t. We have evaluated the different movements
caused by different parameters on three labeled
face databases [28, 29, 30]. For each type of
parameter, we fix others and replace it with a
mean value, then we generate its 2D landmark-
s via our bilinear model and 2D displacement
model. Following we compute the normalized
inter-pupil distance between landmarks generat-
ed by real parameters and the replaced ones. As
shown in Fig. 2, the errors decrease from pose
to identity. An example of movements by dif-
ferent parameters also illustrates different-level
contributions of different parameters.

If a cost function is differentiable, it will be
a wise choice to solve different parts one by
one with a coordinate decent method. Denot-
ing M = {R, t}, P = {M,D, e,u}, An ideal
format of the coordinate decent method for Eq.
7 is:

Mk+1 = Mk − αJTh,M(φMk
− φ∗)

Dk+1 = Dk − αJTh,D(φDk
− φ∗)

ek+1 = ek − αJTh,e(φek − φ∗)
uk+1 = uk − αJTh,u(φuk

− φ∗)

(8)

where α is the learning ratio, Jh,M, Jh,D,
Jh,e and Jh,u are Jacobi matrices of differ-
ent parameters with chain rule by h, φ∗ =
h(I, s(P∗)) is the real feature, φMk

is the fea-
ture obtained by {Mk,Dk, ek,uk}, φDk

is ob-
tained by {Mk+1,Dk, ek,uk}, φek is obtained
by {Mk+1,Dk+1, ek,uk} and φuk

is obtained
by {Mk+1,Dk+1, ek+1,uk}.

Because the function h is not differentiable,
the analytic solutions of Jacobi matrices cannot
be computed directly. Alternatively, the decen-
t mappings WMk

≈ JTh,M, WDk
≈ JTh,D,

Wek ≈ JTh,e and Wuk
≈ JTh,u between d-

ifferent parameters and function output can be
learned as approximation of Jacobi matrices
when a sufficient number of training samples
are provided. It is noticed that a real feature is
known during training but unknown for testing,
so it is replaced with the mean feature φ∗ of all

real features for training. Thus our supervised
coordinate descent method is described as,

Mk+1 = Mk − αWMk
(φMk

− φ∗)
Dk+1 = Dk − αWDk

(φDk
− φ∗)

ek+1 = ek − αWek(φek − φ∗)
uk+1 = uk − αWuk

(φuk
− φ∗)

(9)

At the k-th cascaded step, the coordinate
decent mappings WMk

, WDk
, Wek and

Wuk
are learned with training pairs SMk

=
{∆Mi

k,∆φ
i
Mk
}, SDk

= {∆Di
k,∆φ

i
Dk
},

Sek = {∆eik,∆φ
i
ek
} and Suk

= {∆uik,∆φ
i
uk
},

respectively. Each part is learned by a linear re-
gression, as shown in Eq. 10:

WMk
= arg min

WMk

∑
‖∆Mi

k −WMk
∆φiMk

‖2

WDk
= arg min

WDk

∑
‖∆Di

k −WDk
∆φiDk

‖2

Wek = arg min
Wek

∑
‖∆eik −Wek∆φiek‖

2

Wuk
= arg min

Wuk

∑
‖∆uik −Wuk

∆φiuk
‖2

(10)

where ∆Mi
k = Mi

∗−Mi
k, ∆φiMk

= φ∗−φiMk
,

∆eik = ei∗−eik, ∆φiek = φ∗−φiek , ∆uik = ui∗−
uik, ∆φiuk

= φ∗ − φiuk
, and ∆Di

k = Di
∗ −Di

k,
∆φiDk

= φ∗ − φiDk
.

4 SCDM Application for Face
Tracking

In this section we describe the details of a SCD-
M application to face tracking. A core tensor is
first computed for the bilinear model by N-mode
SVD on a public database. Then our SCDM re-
gression model is trained on augmented public
datasets according to the Section 3. Finally the
trained SCDM is used for tracking face land-
marks in face image sequences. A flowchart of
our method is shown in Fig. 1.

4.1 Preparation for Training

We use 3D part of Facewarehouse database [28]
to build the bilinear model. This database con-
sists of 3D meshes of 150 different persons with



47 expressions for each. There are over 11k ver-
texes on each mesh. The original data is orga-
nized as a 11k vertexes × 150 identities ×
47 expressions tensor. We compress it to a
11k vertexes×50 identities×25 expressions
core tensor by N-mode SVD on 2-mode and 3-
mode. The core tensor is used in the bilinear
model.

There are three public datasets used for train-
ing our SCDM: Facewarehouse [28], LFW[29]
and GTAV[30]. There are 5904 2D images in
Facewarehouse, specially including 1152 im-
ages in left pose and 1152 images in right pose.
Different with the 3D part of this database, it
includes 150 different persons with 24 expres-
sions in frontal pose, and also 48 persons with
24 expressions in left pose and right pose. 7258
images from 3010 persons in the LFW are used,
and 1298 images from 44 persons in the GTAV
are used. All the images are labeled with 73 fa-
cial landmarks and face bounding boxes are de-
tected by a fast face detector[31].

Pose parameters, expression coefficients, i-
dentity coefficients, and displacements have not
been given in raw databases, so we solve them
with labeled 2D landmarks by minimizing the
cost function in Eq. 5. The optimization algo-
rithm is an efficient gradient descent method as
Shuang et al. adopt [24]. Thus there are totally
14460 samples prepared for training. According
to Yan at el.’s work [32] the HOG feature outper-
forms SIFT and others for shape-indexed feature
in a cascaded regression, so HOG is adopted as
our feature function.

4.2 Training the SCDM Regression
Model

The mean shape P∗ of all parameters for train-
ing is used as the initialization P0 at the first
training or testing step. At each training step, we
learn pose mapping first, and then update cur-
rent shape-indexed feature with the new pose,
then we learn displacement mapping and update
feature with the new displacement. Similar op-
erations are followed by expression and identity
according to Eq. 9 and Eq. 10. A few number
of iterations are executed until the training error
is under a threshold or the number of iterations
reaches the maximum. 4 iterations are adopted
in our application, which are enough for accu-

Figure 3: An example of run-time regression at
the first iterative step.

rate result.

4.3 Run-time Tracking

To initialize, the face bounding-box of the the
first frame in a user-specific video is scanned
by a face detector [31]. Then we use an ob-
ject tracker [33] to capture the bounding box of
the face in the subsequent frames. After that we
crop a whole frame by the face bounding box,
and conduct face alignment and tracking with
our SCDM regression. Testing process also s-
tarts from the mean shape P∗, and then the dif-
ferent parameters and features are updated one
by one with learned coordinate descent map-
pings based on Eq. 9. Iteration is executed for
several times until reaching the maximum. An
example of run-time regression at the first itera-
tive step is shown in Fig. 3.

5 Experiments and Results

We collected 14 challenging videos online to
evaluate the overall performance. The frame
number of each video ranges from 190 to 900,
and the total number of all the frames is 5135.
The resolution of each video is 640 × 480. Al-
l the frames are labeled with 73 2D landmark-
s. Pose, expression coefficients, identity coeffi-
cients and 2D displacement are also computed
based on our 3D bilinear model with labeled 2D
landmarks, which are used for reconstruct 3D
face meshes of these frames as the ground-truth
3D mesh.

There are different people talking with vari-
ous expressions, poses, partial occlusions and
illuminations among these sequences. The
comparison with state-of-the-art 2D regression-
based and model-based methods is performed.



Figure 4: Landmark tracking comparison in
challenging videos. From left to right:
Ours, ERT, AAM

2D regression-based methods include state-of-
the-art Ensemble of Regression Trees (ERT)
[14], regressing Local Binary Features (LBF)
[15]. 2D model-based methods include popular
AAM-based methods: AAM-1[2] and AAM-2
[12]. A recent 3D Robust method [25] is also
compared. These methods are also trained on
the same three databases.

We evaluate the 3D mesh errors and 2D land-
mark errors of our SCDM and other method-
s. The measure metric of 2D landmark errors
is the normalized inner-pupil distance, as used
in popular methods [14, 15]. Because landmark
tracking is usually used for capturing 3D facial
performance, it is important to get accurate 3D
meshes from 2D/3D tracked result. The mesh
error is evaluated by calculating the normalized
distance between a ground-truth mesh and it-
s reconstructed one. Since the compared 2D-
based methods do not directly provide 3D pa-
rameters for reconstructing a 3D mesh, we re-
construct their 3D meshes by: Solve 3D param-
eters with the predicted 2D landmarks as we do
during training data preparation, and then gen-
erate 3D meshes with solved parameters. All
the Experiments are done on a PC with the same
hardware—i5 CPU(2.57 GHz), 16GB RAM and
operating system —WIN-10. The mesh errors
and landmark errors of different methods are
shown in Tab. 1. It indicates that our SCD-
M can track landmarks more accurately. More-
over, 3D meshes directly generated by our SCD-
M are much more reliable than the reconstructed

ones with 2D-based methods. Fig. 4 illustrates
landmark tracking results in these challenging
videos. It can be seen that our SCDM still keep
stable localization when the pose and expression
change drastically, or partial occlusion occurs.
2D-based methods fail to track in the same sit-
uation. More examples of our SCDM tracking
in different videos are shown in Fig. 5 and a
application demo is also presented in our sup-
plementary video.

Table 1: Error comparison in challenging videos
Method Mesh error Landmark error

Our SCDM 25.1 5.1
3D Robust[25] 41.7 7.2

ERT[14] 92.3 19.2
LBF[15] 88.1 11.4

AAM-1[12] 97.3 21.9
AAM-2[2] 87.9 21.3

6 Conclusion

In this paper we present a novel data-driven
face alignment and tracking method for monoc-
ular videos. A bilinear model is used as the
3D prior to strengthen cascaded regression pro-
cessing. A novel supervised coordinate descen-
t method is proposed to separately learning the
descent mappings between different types of pa-
rameters with shape-indexed features individ-
ually, which is more stable than the previous
whole-parameter regression works. Benefiting
from 3D prior of the bilinear model, it shows
more reliable capture ability than popular 2D-
based methods while tracking face landmarks
with variations out of plane. Our work is easy
to be extended for performance-based facial an-
imation and expression transfer in many cus-
tomized AR/VR applications, which is consid-
ered as our future work.
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