1,002 research outputs found

    The distribution of pairwise peculiar velocities in the nonlinear regime

    Get PDF
    The distribution of pairwise, relative peculiar velocities, f(u;r)f(u;r), on small nonlinear scales, rr, is derived from the Press--Schechter approach. This derivation assumes that Press--Schechter clumps are virialized and isothermal. The virialized assumption requires that the circular velocity, VcM1/3V_c \propto M^{1/3}, where MM denotes the mass of the clump. The isothermal assumption means that the circular velocity is independent of radius. Further, it is assumed that the velocity distribution within a clump is Maxwellian, that the pairwise relative velocity distribution is isotropic, and that on nonlinear scales clump-clump motions are unimportant when calculating the distribution of velocity differences. Comparison with NN-body simulations shows that, on small nonlinear scales, all these assumptions are accurate. For most power spectra of interest, the resulting line of sight, pairwise, relative velocity distribution, f(ur)f(u_{\rm r}), is well approximated by an exponential, rather than a Gaussian distribution. This simple Press--Schechter model is also able to provide a natural explanation for the observed, non-Maxwellian shape of f(v)f(v), the distribution of peculiar velocities.Comment: (MNRAS, in press) 16 pages, uuencode

    The Mass Function of Dark Halos in Superclusters and Voids

    Full text link
    A modification of the Press-Schechter theory allowing for presence of a background large-scale structure (LSS) - a supercluster or a void, is proposed. The LSS is accounted as the statistical constraints in form of linear functionals of the random overdensity field. The deviation of the background density within the LSS is interpreted in a pseudo-cosmological sense. Using the constraints formalism may help us to probe non-trivial spatial statistics of haloes, e.g. edge and shape effects on boundaries of the superclusters and voids. Parameters of the constraints are connected to features of the LSS: its mean overdensity, a spatial scale and a shape, and spatial momenta of higher orders. It is shown that presence of a non-virialized LSS can lead to an observable deviation of the mass function. This effect is exploited to build a procedure to recover parameters of the background perturbation from the observationally estimated mass function.Comment: 23 pages, 6 figures; to be appeared in Astronomy Reports, 2014, Vol. 58, No. 6, pp. 386-39

    Halo stochasticity in global clustering analysis

    Full text link
    In the present work we study the statistics of haloes, which in the halo model determines the distribution of galaxies. Haloes are known to be biased tracer of dark matter, and at large scales it is usually assumed there is no intrinsic stochasticity between the two fields. Following the work of Seljak & Warren (2004), we explore how correct this assumption is and, moving a step further, we try to qualify the nature of stochasticity. We use Principal Component Analysis applied to the outputs of a cosmological N-body simulation to: (1) explore the behaviour of stochasticity in the correlation between haloes of different masses; (2) explore the behaviour of stochasticity in the correlation between haloes and dark matter. We show results obtained using a catalogue with 2.1 million haloes, from a PMFAST simulation with box size of 1000h^{-1}Mpc. In the relation between different populations of haloes we find that stochasticity is not-negligible even at large scales. In agreement with the conclusions of Tegmark & Bromley (1999) who studied the correlations of different galaxy populations, we found that the shot-noise subtracted stochasticity is qualitatively different from `enhanced' shot noise and, specifically, it is dominated by a single stochastic eigenvalue. We call this the `minimally stochastic' scenario, as opposed to shot noise which is `maximally stochastic'. In the correlation between haloes and dark matter, we find that stochasticity is minimized, as expected, near the dark matter peak (k ~ 0.02 h Mpc^{-1} for a LambdaCDM cosmology) and, even at large scales, it is of the order of 15 per cent above the shot noise. Moreover, we find that the reconstruction of the dark matter distribution is improved when we use eigenvectors as tracers of the bias. [Abridged]Comment: 9 pages, 12 figures. Submitted to MNRA

    Rare mutations and potentially damaging missense variants in genes encoding fibrillar collagens and proteins involved in their production are candidates for risk for preterm premature rupture of membranes

    Get PDF
    Preterm premature rupture of membranes (PPROM) is the leading identifiable cause of preterm birth with ~ 40% of preterm births being associated with PPROM and occurs in 1% - 2% of all pregnancies. We hypothesized that multiple rare variants in fetal genes involved in extracellular matrix synthesis would associate with PPROM, based on the assumption that impaired elaboration of matrix proteins would reduce fetal membrane tensile strength, predisposing to unscheduled rupture. We performed whole exome sequencing (WES) on neonatal DNA derived from pregnancies complicated by PPROM (49 cases) and healthy term deliveries (20 controls) to identify candidate mutations/variants. Genotyping for selected variants from the WES study was carried out on an additional 188 PPROM cases and 175 controls. All mothers were self-reported African Americans, and a panel of ancestry informative markers was used to control for genetic ancestry in all genetic association tests. In support of the primary hypothesis, a statistically significant genetic burden (all samples combined, SKAT-O p-value = 0.0225) of damaging/potentially damaging rare variants was identified in the genes of interest—fibrillar collagen genes, which contribute to fetal membrane strength and integrity. These findings suggest that the fetal contribution to PPROM is polygenic, and driven by an increased burden of rare variants that may also contribute to the disparities in rates of preterm birth among African Americans

    Three-Point Correlations in Weak Lensing Surveys: Model Predictions and Applications

    Full text link
    We use the halo model of clustering to compute two- and three-point correlation functions for weak lensing, and apply them in a new statistical technique to measure properties of massive halos. We present analytical results on the eight shear three-point correlation functions constructed using combination of the two shear components at each vertex of a triangle. We compare the amplitude and configuration dependence of the functions with ray-tracing simulations and find excellent agreement for different scales and models. These results are promising, since shear statistics are easier to measure than the convergence. In addition, the symmetry properties of the shear three-point functions provide a new and precise way of disentangling the lensing E-mode from the B-mode due to possible systematic errors. We develop an approach based on correlation functions to measure the properties of galaxy-group and cluster halos from lensing surveys. Shear correlations on small scales arise from the lensing matter within halos of mass M > 10^13 solar masses. Thus the measurement of two- and three-point correlations can be used to extract information on halo density profiles, primarily the inner slope and halo concentration. We demonstrate the feasibility of such an analysis for forthcoming surveys. We include covariances in the correlation functions due to sample variance and intrinsic ellipticity noise to show that 10% accuracy on profile parameters is achievable with surveys like the CFHT Legacy survey, and significantly better with future surveys. Our statistical approach is complementary to the standard approach of identifying individual objects in survey data and measuring their properties.Comment: 30 pages, 21 figures. Corrected typos in equations (23) and (28). Matches version for publication in MNRA

    In Silico Derivation of HLA-Specific Alloreactivity Potential from Whole Exome Sequencing of Stem Cell Transplant Donors and Recipients: Understanding the Quantitative Immuno-biology of Allogeneic Transplantation

    Get PDF
    Donor T cell mediated graft vs. host effects may result from the aggregate alloreactivity to minor histocompatibility antigens (mHA) presented by the HLA in each donor-recipient pair (DRP) undergoing stem cell transplantation (SCT). Whole exome sequencing has demonstrated extensive nucleotide sequence variation in HLA-matched DRP. Non-synonymous single nucleotide polymorphisms (nsSNPs) in the GVH direction (polymorphisms present in recipient and absent in donor) were identified in 4 HLA-matched related and 5 unrelated DRP. The nucleotide sequence flanking each SNP was obtained utilizing the ANNOVAR software package. All possible nonameric-peptides encoded by the non-synonymous SNP were then interrogated in-silico for their likelihood to be presented by the HLA class I molecules in individual DRP, using the Immune-Epitope Database (IEDB) SMM algorithm. The IEDB-SMM algorithm predicted a median 18,396 peptides/DRP which bound HLA with an IC50 of <500nM, and 2254 peptides/DRP with an IC50 of <50nM. Unrelated donors generally had higher numbers of peptides presented by the HLA. A similarly large library of presented peptides was identified when the data was interrogated using the Net MHCPan algorithm. These peptides were uniformly distributed in the various organ systems. The bioinformatic algorithm presented here demonstrates that there may be a high level of minor histocompatibility antigen variation in HLA-matched individuals, constituting an HLA-specific alloreactivity potential. These data provide a possible explanation for how relatively minor adjustments in GVHD prophylaxis yield relatively similar outcomes in HLA matched and mismatched SCT recipients.Comment: Abstract: 235, Words: 6422, Figures: 7, Tables: 3, Supplementary figures: 2, Supplementary tables:

    The fractal dimension of star-forming regions at different spatial scales in M33

    Full text link
    We study the distribution of stars, HII regions, molecular gas, and individual giant molecular clouds in M33 over a wide range of spatial scales. The clustering strength of these components is systematically estimated through the fractal dimension. We find scale-free behavior at small spatial scales and a transition to a larger correlation dimension (consistent with a nearly uniform distribution) at larger scales. The transition region lies in the range 500-1000 pc. This transition defines a characteristic size that separates the regime of small-scale turbulent motion from that of large-scale galactic dynamics. At small spatial scales, bright young stars and molecular gas are distributed with nearly the same three-dimensional fractal dimension (Df <= 1.9), whereas fainter stars and HII regions exhibit higher values (Df = 2.2-2.5). Our results indicate that the interstellar medium in M33 is on average more fragmented and irregular than in the Milky Way.Comment: 18 pages including 4 figures. Accepted for publication in Ap
    corecore