A modification of the Press-Schechter theory allowing for presence of a
background large-scale structure (LSS) - a supercluster or a void, is proposed.
The LSS is accounted as the statistical constraints in form of linear
functionals of the random overdensity field. The deviation of the background
density within the LSS is interpreted in a pseudo-cosmological sense. Using the
constraints formalism may help us to probe non-trivial spatial statistics of
haloes, e.g. edge and shape effects on boundaries of the superclusters and
voids. Parameters of the constraints are connected to features of the LSS: its
mean overdensity, a spatial scale and a shape, and spatial momenta of higher
orders. It is shown that presence of a non-virialized LSS can lead to an
observable deviation of the mass function. This effect is exploited to build a
procedure to recover parameters of the background perturbation from the
observationally estimated mass function.Comment: 23 pages, 6 figures; to be appeared in Astronomy Reports, 2014, Vol.
58, No. 6, pp. 386-39