1,411 research outputs found
An Improved Instability–Shear Hail Proxy for Australia
We evaluated the performance in Australia of proxies designed to identify atmospheric conditions prone to hail and severe storms. In a convection-resolving but short-duration simulation, proxies that use instability and wind shear thresholds overestimated the probability of hail occurring when compared to the estimated occurrence of surface graupel in the model, particularly in Australia’s tropical north. We used reanalysis data and the Australian Bureau of Meteorology severe storm archive to examine atmospheric conditions at times and locations when hailstorms, other storms, and no storms were reported between January 1979 and March 2021. In instability–shear space, the best discriminator between hail and no-storm times was found to vary predictably with melting-level height, allowing a new proxy to better represent latitudinal trends in atmospheric conditions. We found extra conditions that can be applied to the new proxy to efficiently reduce the number of false alarms. The new proxy outperforms the tested existing proxies for detection of hail-prone conditions in Australia
Changes in hail hazard across Australia: 1979–2021
Hail damage is a leading cause of insured losses in Australia, but changes in this hazard have not been robustly quantified. Here, we provide a continental-scale analysis of changes in hail hazard in Australia. A hail proxy applied to reanalysis data shows that from 1979–2021 annual hail-prone days decreased over much of Australia but increased in some heavily populated areas. For example, the annual number of hail-prone days increased by ~40% around Sydney and Perth, the largest cities on Australia’s east and west coasts, respectively. Changes in atmospheric instability have driven the trends. Radar observations, while covering shorter time spans and a more limited area than the reanalysis, corroborate the broad pattern of results. This study shows consistent hail-frequency trends in radar indicators and atmospheric environments and demonstrates substantial increases in hail frequency in major Australian cities where hail impacts are most significant
Quantification and correction of distortion in diffusion-weighted MRI at 1.5 and 3 T in a muscle-invasive bladder cancer phantom for radiotherapy planning
OBJECTIVE: Limited visibility of post-resection muscle-invasive bladder cancer (MIBC) on CT hinders radiotherapy dose escalation of the residual tumour. Diffusion-weighted MRI (DW-MRI) visualises areas of high tumour burden and is increasingly used within diagnosis and as a biomarker for cancer. DW-MRI could, therefore, facilitate dose escalation, potentially via dose-painting and/or accommodating response. However, the distortion inherent in DW-MRI could limit geometric accuracy. Therefore, this study aims to quantify DW-MRI distortion via imaging of a bladder phantom. METHODS: A phantom was designed to mimic MIBC and imaged using CT, DW-MRI and T2W-MRI. Fiducial marker locations were compared across modalities and publicly available software was assessed for correction of magnetic susceptibility-related distortion. RESULTS: Fiducial marker locations on CT and T2W-MRI agreed within 1.2 mm at 3 T and 1.8 mm at 1.5 T. The greatest discrepancy between CT and apparent diffusion coefficient (ADC) maps was 6.3 mm at 3 T, reducing to 1.8 mm when corrected for distortion. At 1.5 T, these values were 3.9 mm and 1.7 mm, respectively. CONCLUSIONS: Geometric distortion in DW-MRI of a model bladder was initially >6 mm at 3 T and >3 mm at 1.5 T; however, established correction methods reduced this to <2 mm in both cases. ADVANCES IN KNOWLEDGE: A phantom designed to mimic MIBC has been produced and used to show distortion in DW-MRI can be sufficiently mitigated for incorporation into the radiotherapy pathway. Further investigation is therefore warranted to enable individually adaptive image-guided radiotherapy of MIBC based upon DW-MRI
Increased insolation threshold for runaway greenhouse processes on Earth like planets
Because the solar luminosity increases over geological timescales, Earth
climate is expected to warm, increasing water evaporation which, in turn,
enhances the atmospheric greenhouse effect. Above a certain critical
insolation, this destabilizing greenhouse feedback can "runaway" until all the
oceans are evaporated. Through increases in stratospheric humidity, warming may
also cause oceans to escape to space before the runaway greenhouse occurs. The
critical insolation thresholds for these processes, however, remain uncertain
because they have so far been evaluated with unidimensional models that cannot
account for the dynamical and cloud feedback effects that are key stabilizing
features of Earth's climate. Here we use a 3D global climate model to show that
the threshold for the runaway greenhouse is about 375 W/m, significantly
higher than previously thought. Our model is specifically developed to quantify
the climate response of Earth-like planets to increased insolation in hot and
extremely moist atmospheres. In contrast with previous studies, we find that
clouds have a destabilizing feedback on the long term warming. However,
subsident, unsaturated regions created by the Hadley circulation have a
stabilizing effect that is strong enough to defer the runaway greenhouse limit
to higher insolation than inferred from 1D models. Furthermore, because of
wavelength-dependent radiative effects, the stratosphere remains cold and dry
enough to hamper atmospheric water escape, even at large fluxes. This has
strong implications for Venus early water history and extends the size of the
habitable zone around other stars.Comment: Published in Nature. Online publication date: December 12, 2013.
Accepted version before journal editing and with Supplementary Informatio
Use of the Meganuclease I-SceI of Saccharomyces cerevisiae to select for gene deletions in actinomycetes
The search for new natural products is leading to the isolation of novel actinomycete species, many of which will ultimately require genetic analysis. Some of these isolates will likely exhibit low intrinsic frequencies of homologous recombination and fail to sporulate under laboratory conditions, exacerbating the construction of targeted gene deletions and replacements in genetically uncharacterised strains. To facilitate the genetic manipulation of such species, we have developed an efficient method to generate gene or gene cluster deletions in actinomycetes by homologous recombination that does not introduce any other changes to the targeted organism's genome. We have synthesised a codon optimised I-SceI gene for expression in actinomycetes that results in the production of the yeast I-SceI homing endonuclease which produces double strand breaks at a unique introduced 18 base pair recognition sequence. Only those genomes that undergo homologous recombination survive, providing a powerful selection for recombinants, approximately half of which possess the desired mutant genotype. To demonstrate the efficacy and efficiency of the system, we deleted part of the gene cluster for the red-pigmented undecylprodiginine complex of compounds in Streptomyces coelicolor M1141. We believe that the system we have developed will be broadly applicable across a wide range of actinomycetes
Recommended from our members
Clouds, circulation and climate sensitivity
Fundamental puzzles of climate science remain unsolved because of our limited understanding of how clouds, circulation and climate interact. One example is our inability to provide robust assessments of future global and regional climate changes. However, ongoing advances in our capacity to observe, simulate and conceptualize the climate system now make it possible to fill gaps in our knowledge. We argue that progress can be accelerated by focusing research on a handful of important scientific
questions that have become tractable as a result of recent advances. We propose four such questions below; they involve understanding the role of cloud feedbacks and convective organization in climate, and the factors that control the position, the strength and the variability of the tropical rain belts and the extratropical storm tracks
Global and regional brain metabolic scaling and its functional consequences
Background: Information processing in the brain requires large amounts of
metabolic energy, the spatial distribution of which is highly heterogeneous
reflecting complex activity patterns in the mammalian brain.
Results: Here, it is found based on empirical data that, despite this
heterogeneity, the volume-specific cerebral glucose metabolic rate of many
different brain structures scales with brain volume with almost the same
exponent around -0.15. The exception is white matter, the metabolism of which
seems to scale with a standard specific exponent -1/4. The scaling exponents
for the total oxygen and glucose consumptions in the brain in relation to its
volume are identical and equal to , which is significantly larger
than the exponents 3/4 and 2/3 suggested for whole body basal metabolism on
body mass.
Conclusions: These findings show explicitly that in mammals (i)
volume-specific scaling exponents of the cerebral energy expenditure in
different brain parts are approximately constant (except brain stem
structures), and (ii) the total cerebral metabolic exponent against brain
volume is greater than the much-cited Kleiber's 3/4 exponent. The
neurophysiological factors that might account for the regional uniformity of
the exponents and for the excessive scaling of the total brain metabolism are
discussed, along with the relationship between brain metabolic scaling and
computation.Comment: Brain metabolism scales with its mass well above 3/4 exponen
Recommended from our members
Making sense of the early-2000s warming slowdown
It has been claimed that the early-2000s global warming slowdown or hiatus, characterized by a reduced rate of global surface warming, has been overstated, lacks sound scientific basis, or is unsupported by observations. The evidence presented here contradicts these claims
Role of Kinesin Heavy Chain in Crumbs Localization along the Rhabdomere Elongation in Drosophila Photoreceptor
BACKGROUND:Crumbs (Crb), a cell polarity gene, has been shown to provide a positional cue for the extension of the apical membrane domain, adherens junction (AJ), and rhabdomere along the growing proximal-distal axis during Drosophila photoreceptor morphogenesis. In developing Drosophila photoreceptors, a stabilized microtubule structure was discovered and its presence was linked to polarity protein localization. It was therefore hypothesized that the microtubules may provide trafficking routes for the polarity proteins during photoreceptor morphogenesis. This study has examined whether Kinesin heavy chain (Khc), a subunit of the microtubule-based motor Kinesin-1, is essential in polarity protein localization in developing photoreceptors. METHODOLOGY/PRINCIPAL FINDINGS:Because a genetic interaction was found between crb and khc, Crb localization was examined in the developing photoreceptors of khc mutants. khc was dispensable during early eye differentiation and development. However, khc mutant photoreceptors showed a range of abnormalities in the apical membrane domain depending on the position along the proximal-distal axis in pupal photoreceptors. The khc mutant showed a progressive mislocalization in the apical domain along the distal-proximal axis during rhabdomere elongation. The khc mutation also led to a similar progressive defect in the stabilized microtubule structures, strongly suggesting that Khc is essential for microtubule structure and Crb localization during distal to proximal rhabdomere elongation in pupal morphogenesis. This role of Khc in apical domain control was further supported by khc's gain-of-function phenotype. Khc overexpression in photoreceptors caused disruption of the apical membrane domain and the stabilized microtubules in the developing photoreceptors. CONCLUSIONS/SIGNIFICANCE:In summary, we examined the role of khc in the regulation of the apical Crb domain in developing photoreceptors. Since the rhabdomeres in developing pupal eyes grow along the distal-proximal axis, these phenotypes suggest that Khc is essential for the microtubule structures and apical membrane domains during the distal-proximal elongation of photoreceptors, but is dispensable for early eye development
- …