131 research outputs found
Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer's disease: Transgene and endogenous APP genes are regulated tissue-specifically
<p>Abstract</p> <p>Background</p> <p>Alzheimer's disease (AD) is a devastating neurodegenerative disorder that affects a large and growing number of elderly individuals. In addition to idiopathic disease, AD is also associated with autosomal dominant inheritance, which causes a familial form of AD (FAD). Some instances of FAD have been linked to mutations in the β-amyloid protein precursor (APP). Although there are numerous mouse AD models available, few rat AD models, which have several advantages over mice, have been generated.</p> <p>Results</p> <p>Fischer 344 rats expressing human APP driven by the ubiquitin-C promoter were generated via lentiviral vector infection of Fischer 344 zygotes. We generated two separate APP-transgenic rat lines, APP21 and APP31. Serum levels of human amyloid-beta (Aβ)<sub>40 </sub>were 298 pg/ml for hemizygous and 486 pg/ml for homozygous APP21 animals. Serum Aβ<sub>42 </sub>levels in APP21 homozygous rats were 135 pg/ml. Immunohistochemistry in brain showed that the human APP transgene was expressed in neurons, but not in glial cells. These findings were consistent with independent examination of enhanced green fluorescent protein (eGFP) in the brains of eGFP-transgenic rats. APP21 and APP31 rats expressed 7.5- and 3-times more APP mRNA, respectively, than did wild-type rats. Northern blots showed that the human APP transgene, driven by the ubiquitin-C promoter, is expressed significantly more in brain, kidney and lung compared to heart and liver. A similar expression pattern was also seen for the endogenous rat APP. The unexpected similarity in the tissue-specific expression patterns of endogenous rat APP and transgenic human APP mRNAs suggests regulatory elements within the cDNA sequence of APP.</p> <p>Conclusion</p> <p>This manuscript describes the generation of APP-transgenic inbred Fischer 344 rats. These are the first human AD model rat lines generated by lentiviral infection. The APP21 rat line expresses high levels of human APP and could be a useful model for AD. Tissue-specific expression in the two transgenic rat lines and in wild-type rats contradicts our current understanding of APP gene regulation. Determination of the elements that are responsible for tissue-specific expression of APP may enable new treatment options for AD.</p
Osteo-cise: Strong Bones for Life: protocol for a community-based randomised controlled trial of a multi-modal exercise and osteoporosis education program for older adults at risk of falls and fractures
Background : Osteoporosis affects over 220 million people worldwide, and currently there is no \u27cure\u27 for the disease. Thus, there is a need to develop evidence-based, safe and acceptable prevention strategies at the population level that target multiple risk factors for fragility fractures to reduce the health and economic burden of the condition. Methods : The \u27Osteo-cise: Strong Bones for Life\u27 study will investigate the effectiveness and feasibility of a multi-component targeted exercise, osteoporosis education/awareness and behavioural change program for improving bone health and muscle function, and reducing falls risk in community-dwelling older adults at an increased risk of fracture. Men and women aged 60 years or above will participate in an 18-month randomised controlled trial comprising a 12-month structured and supervised community-based program and a 6-month \u27research to practise\u27 translational phase. Participants will be randomly assigned to either the \u27Osteo-cise\u27 intervention or a self-management control group. The intervention will comprise a multi-modal exercise program incorporating high velocity progressive resistance training, moderate impact weight-bearing exercise and high challenging balance exercises performed three times weekly at local community-based fitness centres. A behavioural change program will be used to enhance exercise adoption and adherence to the program. Community-based osteoporosis education seminars will be conducted to improve participant knowledge and understanding of the risk factors and preventative measures for osteoporosis, falls and fractures. The primary outcomes measures, to be collected at baseline, 6, 12, and 18 months, will include DXA-derived hip and spine bone mineral density measurements and functional muscle power (timed stair-climb test). Secondary outcomes measures include: MRI-assessed distal femur and proximal tibia trabecular bone micro-architecture, lower limb and back maximal muscle strength, balance and function (four square step test, functional reach test, timed up-and-go test and 30-second sit-to-stand), falls incidence and health-related quality of life. Cost-effectiveness will also be assessed. Discussion : The findings from the Osteo-cise: Strong Bones for Life study will provide new information on the efficacy of a targeted multi-modal community-based exercise program incorporating high velocity resistance training, together with an osteoporosis education and behavioural change program for improving multiple risk factors for falls and fracture in older adults at risk of fragility fracture.<br /
Isokinetic eccentric exercise substantially improves mobility, muscle strength and size, but not postural sway metrics in older adults, with limited regression observed following a detraining period
© 2020, The Author(s). Introduction: Eccentric exercise can reverse age-related decreases in muscle strength and mass; however, no data exist describing its effects on postural sway. As the ankle may be more important for postural sway than hip and knee joints, and with older adults prone to periods of inactivity, the effects of two 6-week seated isokinetic eccentric exercise programmes, and an 8-week detraining period, were examined in 27 older adults (67.1 ± 6.0 years). Methods: Neuromuscular parameters were measured before and after training and detraining periods with subjects assigned to ECC (twice-weekly eccentric-only hip and knee extensor contractions) or ECCPF (identical training with additional eccentric-only plantarflexor contractions) training programmes. Results: Significant (P \u3c 0.05) increases in mobility (decreased timed-up-and-go time [− 7.7 to − 12.0%]), eccentric strength (39.4–58.8%) and vastus lateralis thickness (9.8–9.9%) occurred after both training programmes, with low-to-moderate weekly rate of perceived exertion (3.3–4.5/10) reported. No significant change in any postural sway metric occurred after either training programme. After 8 weeks of detraining, mobility (− 8.2 to − 11.3%), eccentric strength (30.5–50.4%) and vastus lateralis thickness (6.1–7.1%) remained significantly greater than baseline in both groups. Conclusion: Despite improvements in functional mobility, muscle strength and size, lower-limb eccentric training targeting hip, knee and ankle extensor muscle groups was not sufficient to influence static balance. Nonetheless, as the beneficial functional and structural adaptations were largely maintained through an 8-week detraining period, these findings have important implications for clinical exercise prescription as the exercise modality, low perceived training intensity, and adaptive profile are well suited to the needs of older adults
The Toll→NFκB Signaling Pathway Mediates the Neuropathological Effects of the Human Alzheimer's Aβ42 Polypeptide in Drosophila
Alzheimer's (AD) is a progressive neurodegenerative disease that afflicts a significant fraction of older individuals. Although a proteolytic product of the Amyloid precursor protein, the Αβ42 polypeptide, has been directly implicated in the disease, the genes and biological pathways that are deployed during the process of Αβ42 induced neurodegeneration are not well understood and remain controversial. To identify genes and pathways that mediated Αβ42 induced neurodegeneration we took advantage of a Drosophila model for AD disease in which ectopically expressed human Αβ42 polypeptide induces cell death and tissue degeneration in the compound eye. One of the genes identified in our genetic screen is Toll (Tl). It encodes the receptor for the highly conserved Tl→NFkB innate immunity/inflammatory pathway and is a fly homolog of the mammalian Interleukin-1 (Ilk-1) receptor. We found that Tl loss-of-function mutations dominantly suppress the neuropathological effects of the Αβ42 polypeptide while gain-of-function mutations that increase receptor activity dominantly enhance them. Furthermore, we present evidence demonstrating that Tl and key downstream components of the innate immunity/inflammatory pathway play a central role in mediating the neuropathological activities of Αβ42. We show that the deleterious effects of Αβ42 can be suppressed by genetic manipulations of the Tl→NFkB pathway that downregulate signal transduction. Conversely, manipulations that upregulate signal transduction exacerbate the deleterious effects of Aβ42. Since postmortem studies have shown that the Ilk-1→NFkB innate immunity pathway is substantially upregulated in the brains of AD patients, the demonstration that the Tl→NFkB signaling actively promotes the process of Αβ42 induced cell death and tissue degeneration in flies points to possible therapeutic targets and strategies
Evaluating the effects of increasing physical activity to optimize rehabilitation outcomes in hospitalized older adults (MOVE Trial): Study protocol for a randomized controlled trial
Background: Older adults who have received inpatient rehabilitation often have significant mobility disability at discharge. Physical activity levels in rehabilitation are also low. It is hypothesized that providing increased physical activity to older people receiving hospital-based rehabilitation will lead to better mobility outcomes at discharge. Methods/Design: A single blind, parallel-group, multisite randomized controlled trial with blinded assessment of outcome and intention-to-treat analysis. The cost effectiveness of the intervention will also be examined. Older people (age >60 years) undergoing inpatient rehabilitation to improve mobility will be recruited from geriatric rehabilitation units at two Australian hospitals. A computer-generated blocked stratified randomization sequence will be used to assign 198 participants in a 1:1 ratio to either an 'enhanced physical activity' (intervention) group or a 'usual care plus' (control) group for the duration of their inpatient stay. Participants will receive usual care and either spend time each week performing additional physical activities such as standing or walking (intervention group) or performing an equal amount of social activities that have minimal impact on mobility such as card and board games (control group). Self-selected gait speed will be measured using a 6-meter walk test at discharge (primary outcome) and 6 months follow-up (secondary outcome). The study is powered to detect a 0.1 m/sec increase in self-selected gait speed in the intervention group at discharge. Additional measures of mobility (Timed Up and Go, De Morton Mobility Index), function (Functional Independence Measure) and quality of life will be obtained as secondary outcomes at discharge and tertiary outcomes at 6 months follow-up. The trial commenced recruitment on 28 January 2014. Discussion: This study will evaluate the efficacy and cost effectiveness of increasing physical activity in older people during inpatient rehabilitation. These results will assist in the development of evidenced-based rehabilitation programs for this population. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12613000884707(Date of registration 08 August 2013); ClinicalTrials.gov Identifier NCT01910740(Date of registration 22 July 2013)
Phonon distributions of a single bath mode coupled to a quantum dot
The properties of an unconventional, single mode phonon bath coupled to a
quantum dot, are investigated within the rotating wave approximation. The
electron current through the dot induces an out of equilibrium bath, with a
phonon distribution qualitatively different from the thermal one. In selected
transport regimes, such a distribution is characterized by a peculiar selective
population of few phonon modes and can exhibit a sub-Poissonian behavior. It is
shown that such a sub-Poissonian behavior is favored by a double occupancy of
the dot. The crossover from a unequilibrated to a conventional thermal bath is
explored, and the limitations of the rotating wave approximation are discussed.Comment: 21 Pages, 7 figures, to appear in New Journal of Physics - Focus on
Quantum Dissipation in Unconventional Environment
Cognitive and Socio-Emotional Deficits in Platelet-Derived Growth Factor Receptor-β Gene Knockout Mice
Platelet-derived growth factor (PDGF) is a potent mitogen. Extensive in vivo studies of PDGF and its receptor (PDGFR) genes have reported that PDGF plays an important role in embryogenesis and development of the central nervous system (CNS). Furthermore, PDGF and the β subunit of the PDGF receptor (PDGFR-β) have been reported to be associated with schizophrenia and autism. However, no study has reported on the effects of PDGF deletion on mice behavior. Here we generated novel mutant mice (PDGFR-β KO) in which PDGFR-β was conditionally deleted in CNS neurons using the Cre/loxP system. Mice without the Cre transgene but with floxed PDGFR-β were used as controls. Both groups of mice reached adulthood without any apparent anatomical defects. These mice were further examined by conducting several behavioral tests for spatial memory, social interaction, conditioning, prepulse inhibition, and forced swimming. The test results indicated that the PDGFR-β KO mice show deficits in all of these areas. Furthermore, an immunohistochemical study of the PDGFR-β KO mice brain indicated that the number of parvalbumin (calcium-binding protein)-positive (i.e., putatively γ-aminobutyric acid-ergic) neurons was low in the amygdala, hippocampus, and medial prefrontal cortex. Neurophysiological studies indicated that sensory-evoked gamma oscillation was low in the PDGFR-β KO mice, consistent with the observed reduction in the number of parvalbumin-positive neurons. These results suggest that PDGFR-β plays an important role in cognitive and socioemotional functions, and that deficits in this receptor may partly underlie the cognitive and socioemotional deficits observed in schizophrenic and autistic patients
Voltammetric sensor for theophylline using sol-gel immobilized molecularly imprinted polymer particles
El tÃtol del pre-print va ser: Development of a voltammetric sensor for theophylline with sol-gel immobilised molecularly imprinted polymer particlesApplication of Molecularly Imprinted Polymers (MIPs) to sensor substrates holds great promise within the field of electrochemical sensing due to their low price, tailored selectivity and facile synthesis protocols. Though MIPs can be synthesised directly onto the surface of sensors via layer or film deposition, this can be difficult due to the high number of interdependent steps involved in their synthesis. For this reason, synthesis of MIP particles is more frequently employed by synthetic and non-specialist laboratories alike. There is, however a lack of immobilisation protocols for these particles. Herein, there is presented a sol-gel based immobilisation method for MIP particles for the development of an electrochemical sensor. The macroporous precipitation-polymerised particles were imprinted with Theophylline, combined with graphite in the sol-gel and deposited on an electrode surface. The sensor was tested using differential pulse voltammetry. A limit of detection of 1µM and a relative standard deviation of 6.85% was observed for the primary analyte. The electrode was regenerated via a thermal washing process with a signal loss of 29.3% following the initial regeneration and 2.35% per subsequent regeneration
- …