151 research outputs found

    Senate \u27libelously\u27 labeled by Campus

    Get PDF
    Letter to the editor of The Maine Campus. We feel it necessary to take issue with your recent editorial, entitled, Elected Cowardice. The seven authors of the letter express support for the decision made by the University Senate to deny finding to the Wilde-Stein club and vow, ...if they successfully obtain travel funds, we intend to approach the senate with the idea of one of our classmates and form a Happy Hetero Club, and [ask] for funds to travel [to] prime chick locations

    Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide

    Get PDF
    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic-and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003-2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates

    Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide

    Get PDF
    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic-and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003-2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates

    T-lymphocyte subsets in liver tissues of patients with primary biliary cirrhosis (PBC), patients with primary sclerosing cholangitis (PSC), and normal controls

    Get PDF
    T lymphocytes infiltrating hepatic tissues were typed and enumerated in liver biopsies of patients with primary biliary cirrhosis (PBC), patients with primary sclerosing cholangitis (PSC), and normal controls using monoclonal antibodies and the avidin-biotin-immunoperoxidase technique. The peripheral blood mononuclear cells were studied also by flow cytometry. In PBC, T lymphocytes were decreased (P<0.001) in the blood [absolute number was 426±200 (SE) vs 1351±416 in 15 controls], as was the helper/suppressor (T4/T8) ratio (1.0±0.1 vs normal 2.3±0.3). T lymphocytes were the most numerous mononuclear cells infiltrating portal areas of PBC livers: 749±93/5 high-power fields (HPF) in PBC vs 98±15/5 HPF (P<0.01) in controls. The T4/T8 ratios varied from 0.9 to 2.3 (mean, 1.8±0.1) in the portal triads (normal mean, 1.6±0.1), with the T4+ cells accounting for more than 75% of infiltrating T cells. In contrast, the mean T4/T8 ratio in portal triads of PSC was reduced (1.0±0.3) due to a significant increase (P<0.001) in the number of T8+ cells. The T cells around and in the walls of bile ducts in PBC were mostly T8+, and the T4/T8 ratio was 0.8±0.2. No T8+ cells were seen in this location in PSC and normal livers. Few mononuclear cells were present in hepatic lobules. Subtyping of T lymphocytes in liver tissues of patients with PBC and PSC may be helpful in the differential pathologic diagnosis. In patients with advanced PBC, a decrease in T4+ cells in the blood appeared to be accompanied by their accumulation in the portal triads. In contrast, T8+ cells accumulated preferentially around bile ducts. © 1984 Plenum Publishing Corporation

    Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra

    Get PDF
    Column-averaged volume mixing ratios of carbon dioxide and methane retrieved from the Greenhouse gases Observing SATellite (GOSAT) Short-Wavelength InfraRed observation (GOSAT SWIR XCO2 and XCH4) were compared with the reference data ob- 5 tained by ground-based high-resolution Fourier Transform Spectrometers (g-b FTSs) participating in the Total Carbon Column Observing Network (TCCON). Through calibrations of g-b FTSs with airborne in-situ measurements, the uncertainty of XCO2 and XCH4 associated with the g-b FTS was determined to be 0.8 ppm (0.2%) and 4 ppb (0.2%), respectively. The GOSAT products are validated with 10 these calibrated g-b FTS data. Preliminary results are as follows: The GOSAT SWIR XCO2 and XCH4 (Version 01.xx) are biased low by 8.85±4.75 ppm (2.3±1.2%) and 20.4±18.9 ppb (1.2±1.1%), respectively. The precision of the GOSAT SWIR XCO2 and XCH4 is considered to be about 1%. The latitudinal distributions of zonal means of the GOSAT SWIR XCO2 and XCH4 show similar features to those of the g-b FTS data

    Retrieval of atmospheric CO2 with enhanced accuracy and precision from SCIAMACHY: validation with FTS measurements and comparison with model results

    Get PDF
    The Bremen Optimal Estimation differential optical absorption spectroscopy (DOAS) (BESD) algorithm for satellite based retrievals of XCO 2 (the column-average dry-air mole fraction of atmospheric CO 2) has been applied to Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY) data. It uses measurements in the O 2-A absorption band to correct for scattering of undetected clouds and aerosols. Comparisons with precise and accurate ground-based Fourier transform spectrometer (FTS) measurements at four Total Carbon Column Observing Network (TCCON) sites have been used to quantify the quality of the new SCIAMACHY XCO 2 data set. Additionally, the results have been compared to NOAA\u27s assimilation system CarbonTracker. The comparisons show that the new retrieval meets the expectations from earlier theoretical studies. We find no statistically significant regional XCO 2 biases between SCIAMACHY and the FTS instruments. However, the standard error of the systematic differences is in the range of 0.2 ppm and 0.8 ppm. The XCO 2 single-measurement precision of 2.5 ppm is similar to theoretical estimates driven by instrumental noise. There are no significant differences found for the year-to-year increase as well as for the average seasonal amplitude between SCIAMACHY XCO 2 and the collocated FTS measurements. Comparison of the year-to-year increase and also of the seasonal amplitude of CarbonTracker exhibit significant differences with the corresponding FTS values at Darwin. Here the differences between SCIAMACHY and CarbonTracker are larger than the standard error of the SCIAMACHY values. The difference of the seasonal amplitude exceeds the significance level of 2 standard errors. Therefore, our results suggest that SCIAMACHY may provide valuable additional information about XCO 2, at least in regions with a low density of in situ measurements. Copyright 2011 by the American Geophysical Union

    Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra

    Get PDF
    Column-averaged volume mixing ratios of carbon dioxide and methane retrieved from the Greenhouse gases Observing SATellite (GOSAT) Short-Wavelength InfraRed observation (GOSAT SWIR XCO2 and XCH4 ) were compared with the reference calibrated data obtained by ground-based high-resolution Fourier Transform Spectrometers (g-b FTSs) participating in the Total Carbon Column Observing Network (TCCON). Preliminary results are as follows: the GOSAT SWIR XCO2 and XCH4 (Version 01.xx) are biased low by 8.85 ±4.75 ppm (2.3±1.2 %) and 20.4±18.9 ppb (1.2±1.1 %), respectively. The standard deviation of the GOSAT SWIR XCO2 and XCH4 is about 1% after correcting the negative biases of XCO2 and XCH4 by 8.85 ppm and 20.4 ppb, respectively. The latitudinal distributions of zonal means of the GOSAT SWIR XCO2 and XCH4 show similar features to those of the g-b FTS data except for the negative biases in the GOSAT data

    Treatment Guidelines for Hyponatremia Stay the Course

    Get PDF
    International guidelines designed to minimize the risk of complications that can occur when correcting severe hyponatremia have been widely accepted for a decade. On the basis of the results of a recent large retrospective study of patients hospitalized with hyponatremia, it has been suggested that hyponatremia guidelines have gone too far in limiting the rate of rise of the serum sodium concentration; the need for therapeutic caution and frequent monitoring of the serum sodium concentration has been questioned. These assertions are reminiscent of a controversy that began many years ago. After reviewing the history of that controversy, the evidence supporting the guidelines, and the validity of data challenging them, we conclude that current safeguards should not be abandoned. To do so would be akin to discarding your umbrella because you remained dry in a rainstorm. The authors of this review, who represent 20 medical centers in nine countries, have all contributed significantly to the literature on the subject. We urge clinicians to continue to treat severe hyponatremia cautiously and to wait for better evidence before adopting less stringent therapeutic limits.</p

    The Total Carbon Column Observing Network

    Get PDF
    A global network of ground-based Fourier transform spectrometers has been founded to remotely measure column abundances of CO_2, CO, CH_4, N_(2)O and other molecules that absorb in the near-infrared. These measurements are directly comparable with the near-infrared total column measurements from space-based instruments. With stringent requirements on the instrumentation, acquisition procedures, data processing and calibration, the Total Carbon Column Observing Network (TCCON) achieves an accuracy and precision in total column measurements that is unprecedented for remotesensing observations (better than 0.25% for CO_2). This has enabled carbon-cycle science investigations using the TCCON dataset, and allows the TCCON to provide a link between satellite measurements and the extensive ground-based in situ network
    corecore