37 research outputs found

    Discovery of Eight New Extremely Metal--Poor Galaxies in the Sloan Digital Sky Survey

    Full text link
    We report the discovery of eight new extremely metal-poor galaxies (XMPGs; 12+log(O/H) < 7.65) and the recovery of four previously known or suspected XMPGs (IZw18, HS0822+3542, HS0837+4717 and A1116+517) using Sloan Digital Sky Survey (SDSS) spectroscopy. These new objects were identified after an analysis of 250,000 galaxy spectra within an area of ~3000 deg^2 on the sky. Our oxygen abundance determinations have an accuracy of ≀\le 0.1 dex and are based on the temperature-sensitive [O {\sc iii}] Ξ»\lambda4363 \AA line and on the direct calculation of the electron temperature. We briefly discuss a new method of oxygen abundance determinations using the [O {\sc ii}] Ξ»\lambda7319,7330 \AA\ lines, which is particularly useful for SDSS emission-line spectra with redshifts ≀\le~0.024 since the [O {\sc ii}] Ξ»\lambda3727 \AA emission line falls outside of the SDSS wavelength range. We detect XMPGs with redshifts ranging from 0.0005 to 0.0443 and MgM_g luminosities from βˆ’-12\fm4 to βˆ’-18\fm6. Our eight new XMPGs increase the number of known metal-deficient galaxies by approximately one quarter. The estimated surface density of XMPGs is 0.004 degβˆ’2^{-2} for rr ≀\le 17\fm77.Comment: To appear in August 20 issue of ApJ Letters, 6 pages, 2 figure

    Анализ возмоТностСй практичСского использования ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π³Π°Π·ΠΎΠ²

    Get PDF
    In recent years, discrete approaches have been widely used in mathematical modeling of physicochemical processes. Cellular automata-based methods greatly simplify modeling procedures in many cases. In particular, this is important when using models in the form of partial differential equations systems to analyze the transfer of a substance in inhomogeneous media. In some cases, it is quite difficult to set the boundary conditions correctly if the object of study has boundaries of complex shape. It is also difficult to use mathematical physics classical equations if one cannot neglect the influence of stochastic effects on the process flow. The lattice gas models considered in the article are one of the types of cellular automata. Until now they have not been widely adopted, despite the fact that the first works on their use appeared about forty years ago. It is known, however, that lattice gases successfully describe a number of hydrodynamic phenomena, and the results obtained do not contradict the generally accepted views on the physical nature of continuous media motion processes. When using models of lattice gases, there are often questions about the correctness of the use of discrete models in various flow regimes. The second problem is a large-scale transition from model discrete parameters to generally accepted macroscopic characteristics of flows, such as flow velocity, viscosity and density of the medium, etc. It is also necessary to take into account that the indicated parameters in the lattice model are dimensionless, and the corresponding real macroscopic parameters have dimension. In this paper, an attempt is made to propose a method of large-scale transition, as well as to indicate the areas of practical use of some models of lattice gases.Π’ послСдниС Π³ΠΎΠ΄Ρ‹ для матСматичСского модСлирования Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСских процСссов стали ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ дискрСтныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹. Π‘Ρ€Π΅Π΄ΠΈ Π½ΠΈΡ… исслСдоватСли Π²Ρ‹Π΄Π΅Π»ΡΡŽΡ‚ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, основанныС Π½Π° использовании ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ². ΠŸΡ€ΠΈΠ²Π»Π΅ΠΊΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹Ρ… матСматичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² обоснована ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… случаях ΠΎΠ½ΠΈ сущСствСнно ΡƒΠΏΡ€ΠΎΡ‰Π°ΡŽΡ‚ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ модСлирования ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Π’ частности, ΠΏΡ€ΠΈ использовании ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π² Π²ΠΈΠ΄Π΅ систСм Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ с частными ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹ΠΌΠΈ для Π°Π½Π°Π»ΠΈΠ·Π° пСрСноса субстанции, трудности Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ Π² случаях протСкания процСссов Π² Π½Π΅ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½Ρ‹Ρ… срСдах. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, Π² рядС случаСв довольно ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎ ΠΎΡΡƒΡ‰Π΅ΡΡ‚Π²ΠΈΡ‚ΡŒ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½ΡƒΡŽ постановку Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Ρ… условий, Ссли ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ исслСдования ΠΈΠΌΠ΅Π΅Ρ‚ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ слоТной Ρ„ΠΎΡ€ΠΌΡ‹. Π’Π°ΠΊΠΆΠ΅ Ρ‚Ρ€ΡƒΠ΄Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ классичСскиС уравнСния матСматичСской Ρ„ΠΈΠ·ΠΈΠΊΠΈ Π² условиях, ΠΊΠΎΠ³Π΄Π° Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ³Π½ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ влиянии стохастичСских эффСктов Π½Π° ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°Π½ΠΈΠ΅ процСсса. ДискрСтныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ Π² Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΌΠ΅Ρ€Π΅ свободны ΠΎΡ‚ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… нСдостатков. РассматриваСмыС Π² ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π³Π°Π·ΠΎΠ² ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· разновидностСй ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΎΠ². НСсмотря Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΏΠΎ использованию Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π³Π°Π·ΠΎΠ² появились ΠΎΠΊΠΎΠ»ΠΎ сорока Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄, ΠΎΠ½ΠΈ Π΄ΠΎ настоящСго Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ распространСния Π² срСдС исслСдоватСлСй СстСствСннонаучных процСссов. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅ имССтся ΠΌΠ½ΠΎΠ³ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π² Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ Π³Π°Π·Ρ‹ достаточно ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Ρ†Π΅Π»Ρ‹ΠΉ ряд гидродинамичСских явлСний, Π° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π½Π΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡Π°Ρ‚ общСпринятым взглядам Π½Π° Ρ„ΠΈΠ·ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρƒ процСссов двиТСния ΡΠΏΠ»ΠΎΡˆΠ½Ρ‹Ρ… срСд. НСсмотря Π½Π° появлСниС Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ количСства разновидностСй ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π³Π°Π·ΠΎΠ², ΠΏΡ€ΠΈ ΠΈΡ… использовании часто Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚ вопросы, ΠΊΠ°ΡΠ°ΡŽΡ‰ΠΈΠ΅ΡΡ Ρ€Π΅ΠΆΠΈΠΌΠΎΠ² тСчСния, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… использованиС дискрСтных ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π±ΡƒΠ΄Π΅Ρ‚ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ‚Π½Ρ‹ΠΌ. Вторая ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ°, ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‰Π°Ρ ΠΏΠ΅Ρ€Π΅Π΄ исслСдоватСлями, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΠΌΠΈ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Π΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ, - это ΠΌΠ°ΡΡˆΡ‚Π°Π±Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ ΠΎΡ‚ ΠΌΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Ρ… дискрСтных ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΊ общСпринятым макроскопичСским характСристикам Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠΉ. Π—Π΄Π΅ΡΡŒ, ΠΏΡ€Π΅ΠΆΠ΄Π΅ всСго, ΠΈΠΌΠ΅ΡŽΡ‚ΡΡ Π² Π²ΠΈΠ΄Ρƒ Ρ‚Π°ΠΊΠΈΠ΅ физичСскиС Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹, ΠΊΠ°ΠΊ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎΡ‚ΠΎΠΊΠ°, Π²ΡΠ·ΠΊΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ срСды ΠΈ ΠΏΡ€. Битуация ослоТняСтся Ρ‚Π΅ΠΌ ΠΎΠ±ΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π² Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π±Π΅Π·Ρ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹ΠΌΠΈ, Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Π΅ макроскопичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΠΈΠΌΠ΅ΡŽΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ. Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ дСлаСтся ΠΏΠΎΠΏΡ‹Ρ‚ΠΊΠ° ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠΈΡ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΡƒ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ области практичСского использования Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… Π³Π°Π·ΠΎΠ²

    Low-Surface-Brightness Galaxies in the Sloan Digital Sky Survey. I. Search Method and Test Sample

    Full text link
    In this paper we present results of a pilot study to use imaging data from the Sloan Digital Sky Survey (SDSS) to search for low-surface-brightness (LSB) galaxies. For our pilot study we use a test sample of 92 galaxies from the catalog of Impey et al. (1996) distributed over 93 SDSS fields of the Early Data Release (EDR). Many galaxies from the test sample are either LSB or dwarf galaxies. To deal with the SDSS data most effectively a new photometry software was created, which is described in this paper. We present the results of the selection algorithms applied to these 93 EDR fields. Two galaxies from the Impey et al. test sample are very likely artifacts, as confirmed by follow-up imaging. With our algorithms, we were able to recover 87 of the 90 remaining test sample galaxies, implying a detection rate of ∼\sim96.5%. The three missed galaxies fall too close to very bright stars or galaxies. In addition, 42 new galaxies with parameters similar to the test sample objects were found in these EDR fields (i.e., ∼\sim47% additional galaxies). We present the main photometric parameters of all identified galaxies and carry out first statistical comparisons. We tested the quality of our photometry by comparing the magnitudes for our test sample galaxies and other bright galaxies with values from the literature. All these tests yielded consistent results. We briefly discuss a few unusual galaxies found in our pilot study, including an LSB galaxy with a two-component disk and ten new giant LSB galaxies.Comment: 36 pages, 16 figures, accepted for publication by AJ, some figures were bitmapped to reduce the siz

    The metallicities of UM151, UM408 and A1228+12 revisited

    Full text link
    We present the results of new spectrophotometry and heavy element abundance determinations for 3 dwarf galaxies UM151, UM408 and A1228+12 (RMB132). These galaxies have been claimed in the literature to have very low metallicities, corresponding to log(O/H)+12 < 7.65, that are in the metallicity range of some candidate local young galaxies. We present higher S/N data for these three galaxies. UM151 and UM408 have significantly larger metallicities: log(O/H)+12 = 8.5 and 7.93, respectively. For A1228+12 our new log(O/H)+12 = 7.73 is close to that recalculated from earlier data (7.68). Thus, the rederived metallicities allow us to remove these objects from the list of galaxies with Z < 1/20 Z_Sun.Comment: LaTeX, 8 pages with 3 Postscript figures, A&A in pres

    Π‘Π ΠΠ’ΠΠ˜Π’Π•Π›Π¬ΠΠ«Π™ ΠΠΠΠ›Π˜Π— ΠœΠ•Π’ΠžΠ”Π˜Πš Π Π•ΠΠ’Π“Π•ΠΠžΠ€Π›Π£ΠžΠ Π•Π‘Π¦Π•ΠΠ’ΠΠžΠ“Πž ΠžΠŸΠ Π•Π”Π•Π›Π•ΠΠ˜Π― Π­Π›Π•ΠœΠ•ΠΠ’ΠΠžΠ“Πž Π‘ΠžΠ‘Π’ΠΠ’Π АРΠ₯Π•ΠžΠ›ΠžΠ“Π˜Π§Π•Π‘ΠšΠžΠ™ ΠšΠ•Π ΠΠœΠ˜ΠšΠ˜ Π˜Π— ΠœΠΠ›Π«Π₯ ΠΠΠ’Π•Π‘ΠžΠš

    Get PDF
    Wavelength-dispersive X-ray fluorescence analysis (WDXRF) and total-reflection X-ray fluorescence (TXRF) analysis were applied to study the elemental composition of the Late Neolithic ancient ceramics collected at the Popovsky Lug burial site (Kachug, Upper Lena river, Russia). Semi-quantitative non-destructive analysis of ceramic pieces showed that measurements of the upper and lower sides of the ceramic are less informative than the measurement of its cut. Various sample preparation techniques for the low quantity of crushed ceramics such as fusion, pressing and preparation of suspensions were compared to preserve the material. Samples were prepared as 150 mg fused beads and 250 mg pressed pellets for WDXRF, and as suspensions of 20 mg sample based on the aqueous solution of the Triton X-100 surfactant for TXRF. Certified methods were used to validate the obtained contents of rock-forming oxides and inductively coupled plasma mass spectrometry was used to confirm the results of trace elements determination. Based on the carried-out studies, a combination of the wavelength-dispersive X-ray fluorescence analysis (glass) and total-reflection X-ray fluorescence analysis (suspension) methods was chosen to obtain the data on the elemental bulk composition of archaeological ceramics. The proposed combination allowed the quantitative determination of Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, V, Cr, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb, and Ba from the sample of crushed ceramics weighing only about 170 mg.Keywords: wavelength-dispersive X-ray fluorescence analysis, total reflection X-ray fluorescence analysis, ceramics, archeology, Popovsky Lug, Upper Lena RiverΒ DOI: http://dx.doi.org/10.15826/analitika.2020.25.1.001Β G.V. Pashkova1,2, M.M. Mukhamedova1,2, V.M. Chubarov1,3, A.S. Maltsev1,4,A.A. Amosova3, E.I. Demonterova1, E.A. Mikheeva1, D.L. Shergin1,2,5, V.A. Pellinen1, A.V. Teten'kin1,4Β 1Institute of the Eatrh’s Crust, SB RAS, 128 Lermontov St., 640033, Irkutsk, Russian Federation2Irkutsk State University, 1 K. Marx St., 664003, Irkutsk, Russian Federation3Vinogradov Institute of Geochemistry, SB RAS, 1А Favorsky st., 664033, Irkutsk, Russian Federation4Irkutsk National Research Technical University, 83 Lermontov st., 664074, Irkutsk, Russian Federation5Irkutsk Regional Museum of Local Lore; 13 K. Marx st., 664003, Irkutsk, Russian FederationДля изучСния элСмСнтного состава Π΄Ρ€Π΅Π²Π½Π΅ΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ эпохи ΠΏΠΎΠ·Π΄Π½Π΅Π³ΠΎ Π½Π΅ΠΎΠ»ΠΈΡ‚Π° стоянки-могильника Поповский Π›ΡƒΠ³ (Ρ€Π°ΠΉΠΎΠ½ посСлка ΠšΠ°Ρ‡ΡƒΠ³, Π²Π΅Ρ€Ρ…ΠΎΠ²ΡŒΠ΅ Ρ€Π΅ΠΊΠΈ Π›Π΅Π½Ρ‹, Россия) ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π΄Π²Π° Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° рСнтгСнофлуорСсцСнтного Π°Π½Π°Π»ΠΈΠ·Π°: Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ диспСрсиСй (WDXRF) ΠΈ рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с ΠΏΠΎΠ»Π½Ρ‹ΠΌ внСшним ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ (TXRF). ΠŸΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎ-количСствСнный Π°Π½Π°Π»ΠΈΠ· Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ измСрСния внСшнСй ΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ повСрхности Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠ΅Π½Π΅Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ΠΌ Π΅Π΅ срСза. Апробированы способы ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΏΡ€ΠΎΠ±, ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π½Π° Π°Π½Π°Π»ΠΈΠ· ΠΌΠ°Π»Ρ‹Ρ… навСсок ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ с Ρ†Π΅Π»ΡŒΡŽ сохранСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°: сплавлСниС, прСссованиС ΠΈ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ суспСнзий. Для WDXRF ΠΈΠ·Π»ΡƒΡ‡Π°Ρ‚Π΅Π»ΠΈ Π³ΠΎΡ‚ΠΎΠ²ΠΈΠ»ΠΈ Π² Π²ΠΈΠ΄Π΅ сплавлСнных стСкол ΠΈΠ· 150 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Π²ΠΈΠ΄Π΅ прСссованных Ρ‚Π°Π±Π»Π΅Ρ‚ΠΎΠΊ ΠΈΠ· 250 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹. Для провСдСния TXRF использовали суспСнзии ΠΈΠ· 20 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹ Π½Π° основС Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ раствора повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ вСщСства Triton X-100. Π’ качСствС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ сравнСния ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΏΠΎΡ€ΠΎΠ΄ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… оксидов примСняли аттСстованныС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ количСствСнного химичСского Π°Π½Π°Π»ΠΈΠ·Π°, ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ микроэлСмСнтов – ΠΌΠ΅Ρ‚ΠΎΠ΄ масс-спСктромСтрии с ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎ-связанной ΠΏΠ»Π°Π·ΠΌΠΎΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ для получСния Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ± элСмСнтном Π²Π°Π»ΠΎΠ²ΠΎΠΌ составС архСологичСской ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ использованиС ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² WDXRF (стСкло) ΠΈ TXRF (суспСнзия). ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ схСма позволяСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ количСствСнноС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, V, Cr, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb ΠΈ Ba ΠΈΠ· навСски ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ массой ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 170 ΠΌΠ³.ΠšΠ»ΡŽΡ‡Π΅Π²Ρ‹Π΅ слова: рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ диспСрсиСй, рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с ΠΏΠΎΠ»Π½Ρ‹ΠΌ внСшним ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ, ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠ°, архСология, Поповский Π›ΡƒΠ³, ВСрхняя Π›Π΅Π½Π°DOI: http://dx.doi.org/10.15826/analitika.2020.25.1.00

    Comparative analysis of X-ray fluorescence methods for elemental composition determination of the archaeological ceramics from low sample quantity

    Full text link
    Для изучСния элСмСнтного состава Π΄Ρ€Π΅Π²Π½Π΅ΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ эпохи ΠΏΠΎΠ·Π΄Π½Π΅Π³ΠΎ Π½Π΅ΠΎΠ»ΠΈΡ‚Π° стоянки-могильника Поповский Π›ΡƒΠ³ (Ρ€Π°ΠΉΠΎΠ½ посСлка ΠšΠ°Ρ‡ΡƒΠ³, Π²Π΅Ρ€Ρ…ΠΎΠ²ΡŒΠ΅ Ρ€Π΅ΠΊΠΈ Π›Π΅Π½Ρ‹, Россия) ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ Π΄Π²Π° Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Π° рСнтгСнофлуорСсцСнтного Π°Π½Π°Π»ΠΈΠ·Π°: Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½Ρ‹ΠΉ рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с Π²ΠΎΠ»Π½ΠΎΠ²ΠΎΠΉ диспСрсиСй (WDXRF) ΠΈ рСнтгСнофлуорСсцСнтный Π°Π½Π°Π»ΠΈΠ· с ΠΏΠΎΠ»Π½Ρ‹ΠΌ внСшним ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ (TXRF). ΠŸΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎ-количСствСнный Π°Π½Π°Π»ΠΈΠ· Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ Π±Π΅Π· ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½ΠΈΡ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ измСрСния внСшнСй ΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ повСрхности Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΌΠ΅Π½Π΅Π΅ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ‚ΠΈΠ²Π½Ρ‹ΠΌΠΈ, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠ΅ΠΌ Π΅Π΅ срСза. Апробированы способы ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΏΡ€ΠΎΠ±, ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ Π½Π° Π°Π½Π°Π»ΠΈΠ· ΠΌΠ°Π»Ρ‹Ρ… навСсок ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ с Ρ†Π΅Π»ΡŒΡŽ сохранСния ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°: сплавлСниС, прСссованиС ΠΈ ΠΏΡ€ΠΈΠ³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠ΅ суспСнзий. Для WDXRF ΠΈΠ·Π»ΡƒΡ‡Π°Ρ‚Π΅Π»ΠΈ Π³ΠΎΡ‚ΠΎΠ²ΠΈΠ»ΠΈ Π² Π²ΠΈΠ΄Π΅ сплавлСнных стСкол ΠΈΠ· 150 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π² Π²ΠΈΠ΄Π΅ прСссованных Ρ‚Π°Π±Π»Π΅Ρ‚ΠΎΠΊ ΠΈΠ· 250 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹. Для провСдСния TXRF использовали суспСнзии ΠΈΠ· 20 ΠΌΠ³ ΠΏΡ€ΠΎΠ±Ρ‹ Π½Π° основС Π²ΠΎΠ΄Π½ΠΎΠ³ΠΎ раствора повСрхностно-Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ вСщСства Triton X-100. Π’ качСствС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ сравнСния ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΏΠΎΡ€ΠΎΠ΄ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… оксидов примСняли аттСстованныС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ количСствСнного химичСского Π°Π½Π°Π»ΠΈΠ·Π°, ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ микроэлСмСнтов – ΠΌΠ΅Ρ‚ΠΎΠ΄ масс-спСктромСтрии с ΠΈΠ½Π΄ΡƒΠΊΡ‚ΠΈΠ²Π½ΠΎ-связанной ΠΏΠ»Π°Π·ΠΌΠΎΠΉ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ для получСния Π΄Π°Π½Π½Ρ‹Ρ… ΠΎΠ± элСмСнтном Π²Π°Π»ΠΎΠ²ΠΎΠΌ составС архСологичСской ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ использованиС ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² WDXRF (стСкло) ΠΈ TXRF (суспСнзия). ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ схСма позволяСт ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ количСствСнноС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, V, Cr, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb ΠΈ Ba ΠΈΠ· навСски ΠΈΠ·ΠΌΠ΅Π»ΡŒΡ‡Π΅Π½Π½ΠΎΠΉ ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ массой ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 170 ΠΌΠ³.Wavelength-dispersive X-ray fluorescence analysis (WDXRF) and total-reflection X-ray fluorescence (TXRF) analysis were applied to study the elemental composition of the Late Neolithic ancient ceramics collected at the Popovsky Lug burial site (Kachug, Upper Lena river, Russia). Semi-quantitative non-destructive analysis of ceramic pieces showed that measurements of the upper and lower sides of the ceramic are less informative than the measurement of its cut. Various sample preparation techniques for the low quantity of crushed ceramics such as fusion, pressing and preparation of suspensions were compared to preserve the material. Samples were prepared as 150 mg fused beads and 250 mg pressed pellets for WDXRF, and as suspensions of 20 mg sample based on the aqueous solution of the Triton X-100 surfactant for TXRF. Certified methods were used to validate the obtained contents of rock-forming oxides and inductively coupled plasma mass spectrometry was used to confirm the results of trace elements determination. Based on the carried-out studies, a combination of the wavelength-dispersive X-ray fluorescence analysis (glass) and total-reflection X-ray fluorescence analysis (suspension) methods was chosen to obtain the data on the elemental bulk composition of archaeological ceramics. The proposed combination allowed the quantitative determination of Na, Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, V, Cr, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb, and Ba from the sample of crushed ceramics weighing only about 170 mg.Π Π°Π±ΠΎΡ‚Π° Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π° ΠΏΡ€ΠΈ финансовой ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠ΅ Π³Ρ€Π°Π½Ρ‚Π° РНЀ β„– 19-78-10084. ВсС измСрСния ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ с использованиСм оборудования Π¦Π΅Π½Ρ‚Ρ€ΠΎΠ² ΠΊΠΎΠ»Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ пользования Β«Π˜Π·ΠΎΡ‚ΠΎΠΏΠ½ΠΎ-гСохимичСских исслСдований» Π˜Π“Π₯ БО РАН ΠΈ Β«Π“Π΅ΠΎΠ΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΠΈ гСохронология» Π˜Π—Πš БО РАН. Авторы Π²Ρ‹Ρ€Π°ΠΆΠ°ΡŽΡ‚ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π½ΠΎΡΡ‚ΡŒ Π²Π΅Π΄ΡƒΡ‰Π΅ΠΌΡƒ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Ρƒ Π˜Π—Πš БО РАН Π‘.Π’. ΠŸΠ°Π½Ρ‚Π΅Π΅Π²ΠΎΠΉ Π·Π° ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ICP-MS Π°Π½Π°Π»ΠΈΠ·Π° ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ ΠΈ Π²Π΅Π΄ΡƒΡ‰Π΅ΠΌΡƒ ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Ρƒ Π˜Π“Π₯ БО РАН Π“.А. ΠŸΠΎΠ³ΡƒΠ΄ΠΈΠ½ΠΎΠΉ Π·Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΡ€ΠΎΠ΄ΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ… оксидов Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΊΠ΅Ρ€Π°ΠΌΠΈΠΊΠΈ.Current work was carried out with the financial support of the Russian Science Foundation (grant No. 19-78-10084). All measurements were performed using the equipment of β€œIsotope-Geochemical Research” and β€œGeodynamics and Geochronology” Joint Use Centers of the Siberian Branch of the Russian Academy of Sciences. The authors are grateful to Svetlana Panteeva for ICPMS analysis and Galina Pogudina for the determination of rock-forming oxides in ceramic samples

    Non-parametric Algorithms in Data Reduction at RATAN-600

    No full text
    . Non-linear and non-parametric algorithms for data averaging, smoothing and clipping in the RATAN-600 flexible astronomical data processing system are proposed. Algorithms are based on robust methods and non-linear filters using an iterative approach to smoothing and clipping. Using robust procedures to detect faint sources is proposed also. This detector is based on the ratio of two statistics, characterizing the noise and signal, in the given interval. These methods allow us to accelerate the process of the data reduction and to improve the signal/noise ratio. Examples of operation of these algorithms are shown. 1. Introduction Obtaining a reliable result on the background from di#erent types of interferences is one of the main problems for the observational astronomy. The question &quot;what is useful signal and what is noise?&quot; is especially essential when we begin &quot;dumb&quot; data processing. The ordinary way to obtain a good signal/noise ratio is to apply the standard average for vectors ..

    Analysis of Practical Applications of Lattice Gas Models

    No full text
    In recent years, discrete approaches have been widely used in mathematical modeling of physicochemical processes. Cellular automata-based methods greatly simplify modeling procedures in many cases. In particular, this is important when using models in the form of partial differential equations systems to analyze the transfer of a substance in inhomogeneous media. In some cases, it is quite difficult to set the boundary conditions correctly if the object of study has boundaries of complex shape. It is also difficult to use mathematical physics classical equations if one cannot neglect the influence of stochastic effects on the process flow. The lattice gas models considered in the article are one of the types of cellular automata. Until now they have not been widely adopted, despite the fact that the first works on their use appeared about forty years ago. It is known, however, that lattice gases successfully describe a number of hydrodynamic phenomena, and the results obtained do not contradict the generally accepted views on the physical nature of continuous media motion processes. When using models of lattice gases, there are often questions about the correctness of the use of discrete models in various flow regimes. The second problem is a large-scale transition from model discrete parameters to generally accepted macroscopic characteristics of flows, such as flow velocity, viscosity and density of the medium, etc. It is also necessary to take into account that the indicated parameters in the lattice model are dimensionless, and the corresponding real macroscopic parameters have dimension. In this paper, an attempt is made to propose a method of large-scale transition, as well as to indicate the areas of practical use of some models of lattice gases

    >

    No full text

    Π£Π΄Π°Ρ€Π½ΠΎΠ΅ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ тонкостСнной конструкции

    No full text
    The punch with cone-shaped working part impact into aluminum alloy thin-walled structures is mathematical modelled applying thermo-mechanical coupling of the physical processes during their deformation. The nonlinear physical properties contain a nonlinear stress-strain rate dependence of temperature. To solve the contact problem the sliding boundary conditions (friction) on moving bodies introduced. Numerical simulation of impact process performed using the finite element method and the independent Lagrange-Euler approach for two variants of the thin-walled box structure. The solution of the dynamic viscous plastic contact problem allowed to determine and to design the stress-strain fields in the thin-walled box section. For comparison, the deformation process of the similar aluminum construction with an additional rib considered when the punch with the conical working part impact. Analysis of stress-strain state for two various types of structural geometries demonstrated that mounting the additional medial rib into its design let redistribute the stress fields and significantly reduce the plastic deformation area during the impact because of four fold increasing in its contact stiffness. Such modification of the structure rigidity may improve the strength properties of the entire composite security device applying changes only to its part.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ конСчноэлСмСнтноС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ процСсса ΡƒΠ΄Π°Ρ€Π½ΠΎΠ³ΠΎ дСформирования тонкостСнной конструкции ΠΈΠ· алюминиСвого сплава ΠΏΡ€ΠΈ ΡƒΠ΄Π°Ρ€Π΅ ΠΏΡ€ΠΎΠ±ΠΎΠΉΠ½ΠΈΠΊΠΎΠΌ с конусообразной Ρ„ΠΎΡ€ΠΌΠΎΠΉ Ρ€Π°Π±ΠΎΡ‡Π΅ΠΉ части. РСшСниС динамичСской ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΠΉ вязкопластичСской Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ поля напряТСний ΠΈ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ для конструкции с Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ Ρ€Π΅Π±Ρ€ΠΎΠΌ ТСсткости. Анализ ΠΏΠΎΠ»Π΅ΠΉ Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠ΅Ρ€Π΅Ρ€Π°ΡΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ поля напряТСний ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ ТСсткости всСйконструкции.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ скінчСнно Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Π½Π΅ модСлювання процСсу ΡƒΠ΄Π°Ρ€Π½ΠΎΠ³ΠΎ дСформування тонкостінної конструкції Π· Π°Π»ΡŽΠΌΡ–Π½Ρ–Ρ”Π²ΠΎΠ³ΠΎ сплаву ΠΏΡ€ΠΈ ΡƒΠ΄Π°Ρ€Ρ– ΠΏΡ€ΠΎΠ±Ρ–ΠΉΠ½ΠΈΠΊΠΎΠΌ Π· ΠΊΠΎΠ½ΡƒΡΠΎΠΏΠΎΠ΄Ρ–Π±Π½ΠΎΡŽ Ρ„ΠΎΡ€ΠΌΠΎΡŽ Ρ€ΠΎΠ±ΠΎΡ‡ΠΎΡ— частини. Розв’язання Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΎΡ— ΠΊΠΎΠ½Ρ‚Π°ΠΊΡ‚Π½ΠΎΡ— в’язкопластичної Π·Π°Π΄Π°Ρ‡Ρ– Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ Π²ΠΈΠ·Π½Π°Ρ‡ΠΈΡ‚ΠΈ поля Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Ρ– Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΠΉ для конструкції Π· Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΈΠΌ Ρ€Π΅Π±Ρ€ΠΎΠΌ Торсткості. Аналіз ΠΏΠΎΠ»Ρ–Π² Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–ΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π², Ρ‰ΠΎ Π½Π°ΡΠ²Π½Ρ–ΡΡ‚ΡŒ Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΎΠ³ΠΎ Ρ€Π΅Π±Ρ€Π° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ ΠΏΠ΅Ρ€Π΅Ρ€ΠΎΠ·ΠΏΠΎΠ΄Ρ–Π»Ρƒ поля Π½Π°ΠΏΡ€ΡƒΠΆΠ΅Π½ΡŒ Ρ– ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ Торсткості всієї конструкції
    corecore