20 research outputs found

    RAG-3D: a search tool for RNA 3D substructures

    Full text link
    To address many challenges in RNA structure/function prediction, the characterization of RNA\u27s modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding

    Computational generation and screening of RNA motifs in large nucleotide sequence pools

    Get PDF
    Although identification of active motifs in large random sequence pools is central to RNA in vitro selection, no systematic computational equivalent of this process has yet been developed. We develop a computational approach that combines target pool generation, motif scanning and motif screening using secondary structure analysis for applications to 1012–1014-sequence pools; large pool sizes are made possible using program redesign and supercomputing resources. We use the new protocol to search for aptamer and ribozyme motifs in pools up to experimental pool size (1014 sequences). We show that motif scanning, structure matching and flanking sequence analysis, respectively, reduce the initial sequence pool by 6–8, 1–2 and 1 orders of magnitude, consistent with the rare occurrence of active motifs in random pools. The final yields match the theoretical yields from probability theory for simple motifs and overestimate experimental yields, which constitute lower bounds, for aptamers because screening analyses beyond secondary structure information are not considered systematically. We also show that designed pools using our nucleotide transition probability matrices can produce higher yields for RNA ligase motifs than random pools. Our methods for generating, analyzing and designing large pools can help improve RNA design via simulation of aspects of in vitro selection

    RAG: An update to the RNA-As-Graphs resource

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2004, we presented a web resource for stimulating the search for novel RNAs, RNA-As-Graphs (RAG), which classified, catalogued, and predicted RNA secondary structure motifs using clustering and build-up approaches. With the increased availability of secondary structures in recent years, we update the RAG resource and provide various improvements for analyzing RNA structures.</p> <p>Description</p> <p>Our RAG update includes a new supervised clustering algorithm that can suggest RNA motifs that may be "RNA-like". We use this utility to describe RNA motifs as three classes: existing, RNA-like, and non-RNA-like. This produces 126 tree and 16,658 dual graphs as candidate RNA-like topologies using the supervised clustering algorithm with existing RNAs serving as the training data. A comparison of this clustering approach to an earlier method shows considerable improvements. Additional RAG features include greatly expanded search capabilities, an interface to better utilize the benefits of relational database, and improvements to several of the utilities such as directed/labeled graphs and a subgraph search program.</p> <p>Conclusions</p> <p>The RAG updates presented here augment the database's intended function - stimulating the search for novel RNA functionality - by classifying available motifs, suggesting new motifs for design, and allowing for more specific searches for specific topologies. The updated RAG web resource offers users a graph-based tool for exploring available RNA motifs and suggesting new RNAs for design.</p

    Graph partitioning results for RNAs corresponding to RAG tree graphs with vertex number (a) V = 4, 5, or 6, (b) V = 7, (c) V = 8, (d) V = 9, (e) V = 10, and (f) V = 11.

    No full text
    <p>RAG tree graph, Laplacian eigenvector, cut values/results of median/sign/gap partitions, and corresponding RNA secondary structures are shown.</p

    Predicting Helical Topologies in RNA Junctions as Tree Graphs

    Get PDF
    <div><p>RNA molecules are important cellular components involved in many fundamental biological processes. Understanding the mechanisms behind their functions requires knowledge of their tertiary structures. Though computational RNA folding approaches exist, they often require manual manipulation and expert intuition; predicting global long-range tertiary contacts remains challenging. Here we develop a computational approach and associated program module (RNAJAG) to predict helical arrangements/topologies in RNA junctions. Our method has two components: junction topology prediction and graph modeling. First, junction topologies are determined by a data mining approach from a given secondary structure of the target RNAs; second, the predicted topology is used to construct a tree graph consistent with geometric preferences analyzed from solved RNAs. The predicted graphs, which model the helical arrangements of RNA junctions for a large set of 200 junctions using a cross validation procedure, yield fairly good representations compared to the helical configurations in native RNAs, and can be further used to develop all-atom models as we show for two examples. Because junctions are among the most complex structural elements in RNA, this work advances folding structure prediction methods of large RNAs. The RNAJAG module is available to academic users upon request.</p></div
    corecore