28 research outputs found

    Exploring population responses to environmental change when there is never enough data: a factor analytic approach

    Get PDF
    © 2018 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society Temporal variability in the environment drives variation in vital rates, with consequences for population dynamics and life-history evolution. Integral projection models (IPMs) are data-driven structured population models widely used to study population dynamics and life-history evolution in temporally variable environments. However, many datasets have insufficient temporal replication for the environmental drivers of vital rates to be identified with confidence, limiting their use for evaluating population level responses to environmental change. Parameter selection, where the kernel is constructed at each time step by randomly selecting the time-varying parameters from their joint probability distribution, is one approach to including stochasticity in IPMs. We consider a factor analytic (FA) approach for modelling the covariance matrix of time-varying parameters, whereby latent variable(s) describe the covariance among vital rate parameters. This decreases the number of parameters to estimate and, where the covariance is positive, the latent variable can be interpreted as a measure of environmental quality. We demonstrate this using simulation studies and two case studies. The simulation studies suggest the FA approach provides similarly accurate estimates of stochastic population growth rate to estimating an unstructured covariance matrix. We demonstrate how the latent parameter can be perturbed to show how selection on reproductive delays in the monocarp Carduus nutans changes under different environmental conditions. We develop a demographic model of the fire dependent herb Eryngium cuneifolium to show how a putative driver of the variation in environmental quality can be incorporated with the addition of a single parameter. Using perturbation analyses we determine optimal management strategies for this species. This approach estimates fewer parameters than previous approaches and allows novel eco-evolutionary insights. Predictions on population dynamics and life-history evolution under different environmental conditions can be made without necessarily identifying causal factors. Putative environmental drivers can be incorporated with relatively few parameters, allowing for predictions on how populations will respond to changes in the environment

    IPBES Invasive Alien Species Assessment: Summary for Policymakers

    Get PDF
    Summary for Policymakers of the Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services

    Optimal-Foraging Predator Favors Commensalistic Batesian Mimicry

    Get PDF
    BACKGROUND:Mimicry, in which one prey species (the Mimic) imitates the aposematic signals of another prey (the Model) to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator-prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry). METHODOLOGY/PRINCIPAL FINDINGS:We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a "Pavlovian" predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation's predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic. CONCLUSIONS/SIGNIFICANCE:Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely presence of alternative prey and the possibility that predation pressure is not constant

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    What Controls the Population Dynamics of the Invasive Thistle Carduus nutans in Its Native Range?

    No full text
    Contains fulltext : 183200.pdf (publisher's version ) (Closed access

    Recent news about saffron thistle ('Carthamus lanatus L.')

    No full text
    Saffron thistle ('Carthamus lanatus' L.) costs Australian agriculture around $111 million per annum, yet until recently, little was known about its population dynamics, how it could be managed in pastures or the potential for biological control. This paper discusses research that addressed these areas. Populations of saffron thistle vary between sites and years, largely in response to environmental conditions and pasture cover. Seed germination and seedling establishment is strongly affected by rainfall, pasture cover, seasonal cycles and seed density. Growth, development, survival and fecundity are strongly influenced by pasture competition and grazing. Seedbanks ranged from 800 to 2300 seeds M-2 in Australia and between 9 and 61 seeds m-² in southern France, within its native range. Grazing management techniques such as rotational grazing can reduce thistle density in pastures, mainly by increasing the amount of pasture cover in autumn, which reduces seedling emergence. There is one potential classical biological control agent, a crown-feeding fly 'Botanophila turcica', which appears to be specific to saffron thistle. The fly, however, has little impact on saffron thistle populations in its native range. Fungal pathogens with potential to be used in mycoherbicides have been identified in Australian pastures. Further research into saffron thistle taxonomy, potential distribution and biological control is required

    Exploring Population Responses To Environmental Change When There Is Never Enough Data: A Factor Analytic Approach

    No full text
    Temporal variability in the environment drives variation in vital rates, with consequences for population dynamics and life-history evolution. Integral projection models (IPMs) are data-driven structured population models widely used to study population dynamics and life-history evolution in temporally variable environments. However, many datasets have insufficient temporal replication for the environmental drivers of vital rates to be identified with confidence, limiting their use for evaluating population level responses to environmental change. Parameter selection, where the kernel is constructed at each time step by randomly selecting the time-varying parameters from their joint probability distribution, is one approach to including stochasticity in IPMs. We consider a factor analytic (FA) approach for modelling the covariance matrix of time-varying parameters, whereby latent variable(s) describe the covariance among vital rate parameters. This decreases the number of parameters to estimate and, where the covariance is positive, the latent variable can be interpreted as a measure of environmental quality. We demonstrate this using simulation studies and two case studies. The simulation studies suggest the FA approach provides similarly accurate estimates of stochastic population growth rate to estimating an unstructured covariance matrix. We demonstrate how the latent parameter can be perturbed to show how selection on reproductive delays in the monocarp Carduus nutans changes under different environmental conditions. We develop a demographic model of the fire dependent herb Eryngium cuneifolium to show how a putative driver of the variation in environmental quality can be incorporated with the addition of a single parameter. Using perturbation analyses we determine optimal management strategies for this species. This approach estimates fewer parameters than previous approaches and allows novel eco-evolutionary insights. Predictions on population dynamics and life-history evolution under different environmental conditions can be made without necessarily identifying causal factors. Putative environmental drivers can be incorporated with relatively few parameters, allowing for predictions on how populations will respond to changes in the environment

    Gene technologies in weed management: a technical feasibility analysis

    No full text
    With the advent of new genetic technologies such as gene silencing and gene drive, efforts to develop additional management tools for weed management is gaining significant momentum. These technologies promise novel ways to develop sustainable weed control options because gene silencing can switch-off genes mediating adaptation (e.g. growth, herbicide resistance), and gene drive can be used to spread modified traits and to engineer wild populations with reduced fitness. However, applying gene silencing and/or gene drive is expected to be inherently complex as their application is constrained by several methodological and technological difficulties. In this review we explore the challenges of these technologies, and discuss strategies and resources accessible to accelerate the development of gene-tech based tools for weed management. We also highlight how gene technologies can be integrated into existing management tactics such as classical biological control, and their possible interactions

    Global threat to agriculture from invasive species

    No full text
    corecore